

## Research Article

# On the Stone-Weierstrass theorem as a vital result in the study of the algebra of continuous functions on a Compact Hausdorff space

Amos Otieno Wanjara\*

Kaimosi Friends University College  
Department of Mathematics and Statistics  
School of Science  
P.O BOX 385-50309, Kaimosi. Kenya.

\*Corresponding author's e-mail: [awanjara@kafuco.ac.ke](mailto:awanjara@kafuco.ac.ke)

## Abstract

In this paper, we present the different versions and formulations of the Stone- Weierstrass theorem that makes it a vital result in the study of the algebra of continuous functions on a compact Hausdorff space. Instead of the real interval  $[a,b]$ , an arbitrary compact Hausdorff space  $X$  is considered and instead of the algebra of polynomial functions, approximation with elements from more general sub-algebras of  $C(X)$  is considered. Some of its contributions and impact to the study of the algebra of continuous functions are also highlighted.

**Keywords:** Compact space; Hausdorff space; Locally compact; Algebra; Sub-algebra; Separability of polynomials.

## Introduction

The original version of Stone-Weierstrass theorem was established by Karl Weierstrass in 1885 using the Weierstrass transform [1]. Marshall H. Stone considerably generalized the theorem [2] and simplified the proof as seen in [3]. His result is known as the Stone-Weierstrass theorem. The Stone-Weierstrass theorem generalizes the Weierstrass approximation into two directions.

Stone starts with an arbitrary compact Hausdorff space  $X$  and considers the algebra  $C(X, \mathbb{R})$  of real-valued continuous functions on  $X$ , with the topology of uniform convergence. He wanted to find sub-algebras of  $C(X, \mathbb{R})$  which are dense. It turns out that the crucial property that a sub-algebra must satisfy is that it separates points. A set  $A$  of functions defined on  $X$  is said to separate points if, for every two different points  $x$  and  $y$  in  $X$  there exists a function  $P$  in  $A$  with the property that  $P(x) \neq P(y)$ .

## Research methodology

### **Definition 1.0 [1, Definition 2.4]**

A space  $X$  is said to be compact if every open covering  $\mathcal{A}$  of  $X$  contains a finite sub collection that also covers  $X$ .

### **Definition 1.1 [2, Definition 1.15]**

A topological space  $X$  is called a Hausdorff space if for each pair  $x_1, x_2$  of distinct points of  $X$ , there exist neighbourhoods  $U_1$  and  $U_2$  of  $x_1$  and  $x_2$  respectively that are disjoint.

### **Definition 1.2 [3, Definition 2.3]**

A space  $X$  is said to be locally compact at  $x$  if there is some compact subset  $C$  of  $X$  that contains a neighborhood of  $x$ . If  $X$  is locally compact at each of its points,  $X$  is said to be locally compact. A compact space is automatically locally compact.

### **Definition 1.3 [4, Definition 3.6]**

An algebra  $A$  over a field  $K$  is a vector space  $A$  over  $K$  such that each ordered pair of elements  $x, y$  in  $A$ , a unique product  $xy$  in  $A$  is defined with the properties

- 1)  $(xy)z = x(yz)$  for  $x, y, z$  in  $A$

- 2)  $x(y+z) = xy+xz$ , for  $x,y,z$  in  $A$
- 3)  $(x+y)z = xz + yz$  for  $x,y,z$  in  $A$
- 4)  $\alpha(xy) = x(\alpha y)$ , for  $x, y$  in  $A$  and scalars  $X$

If  $k = \mathbb{R}$  or  $\mathbb{C}$  then  $A$  is real or complex.

#### Definition 1.4 [5, Definition 2.1]

A subset  $A$  of an algebra  $A$  is called a sub algebra of  $A$  if the application of the algebraic operations to elements of  $A$  yields again elements of  $A$

#### Definition 1.5 [6, Definition 4.2]

Every polynomial has a splitting field that contains all its roots. There roots may all be distinct or there may be repeated roots. Let  $F$  be a field. A polynomial  $f(x)$  in  $F(x)$  of degree  $n$  is said to be separable if it has  $n$  distinct roots in some splitting field. Equivalently,  $f(x)$  is separable if it has no repeated roots in any splitting field.

#### Results and discussion

##### The Stone-Weierstrass approximation theorem [7]

Suppose  $f$  is a continuous complex-valued function defined on the real interval  $[a,b]$   $\forall \varepsilon > 0, \exists$  a  $P$  over  $C$  such that  $\forall x \in [a,b]$ , we have  $|f(x) - P(x)| < \varepsilon$  or equivalently the supremum norm

$$\|f - p\| \leq \varepsilon$$

**Remark 2.0.0:** If  $f$  is real-valued, the polynomial function can be taken over  $\mathbb{R}$

##### The statement of Stone-Weierstrass theorem

Suppose  $X$  is a compact Hausdorff space and  $A$  is a sub algebra of  $C(X, \mathbb{R})$  which contains a non-zero constant function. Then  $A$  is dense in  $C(X, \mathbb{R})$  iff it separates points.

**Remark 2.0.1:** This implies Weierstrass original statement since the polynomials on  $[a,b]$  form a sub algebra of  $C_{[a,b]}$  which contains the constants and separates points.

##### Stone-Weierstrass theorem-real version [8]

The set  $C_{[a,b]}$  of continuous real-valued functions on  $[a,b]$  together with the supremum norm

$$\|f\| = \sup_{x \in [a,b]} |f(x)|, \text{ is a Banach algebra ( i.e an associative algebra and a Banach space such that}$$

$$\|fg\| \leq \|f\| \|g\|, \text{ for all } f, g$$

#### Remark

The set of all polynomial functions forms a sub-algebra of  $C_{[a,b]}$  (i.e a vector subspace of  $C_{[a,b]}$ ) that is closed under multiplication of functions and the content of the Weierstrass approximation theorem is that this sub algebra is dense in  $C_{[a,b]}$ .

#### Stone-Weierstrass theorem (complex version)

Let  $X$  be a compact Hausdorff space and let  $S$  be a subset of  $C(X, \mathbb{C})$  which separates points. Then the complex unital  $*$ -algebra generated by  $S$  is dense in  $C(X, \mathbb{C})$ . The complex unital  $*$ -algebra generated by  $S$  consists of all those functions that can be obtained from the elements of  $S$  by throwing in the constant function 1 and adding them, multiplying them, conjugating them or multiplying them with complex scalars and repeating finitely many times.

#### Remark

This version implies the real version, because if a sequence of complex-valued functions uniformly approximates a given function  $f$ , then the real parts of those functions uniformly approximate the real part of  $f$ . As in the real case, an analog of this theorem is true for locally compact Hausdorff spaces.

#### Stone-Weierstrass theorem -Locally compact version [9]

#### Remark:

A version of the Stone-Weierstrass theorem is also true when  $X$  is only locally compact. Let  $C_0(X, \mathbb{R})$  be the space of real-valued continuous functions on  $X$  which vanish at infinity; that is, a continuous function  $f$  is in  $C_0(X, \mathbb{R})$  if  $\forall \varepsilon > 0 \exists$  a compact set  $K \subset X$  such that  $|f(x)| < \varepsilon$  on  $X \setminus K$ . Again,  $C_0(X, \mathbb{R})$  is a Banach algebra with the supremum norm. A subalgebra  $A$  of  $C_0(X, \mathbb{R})$  is said to vanish nowhere if not all of the elements of  $A$  simultaneously vanish at a point; that is  $\forall x \in X, \exists f \in A: f(x) \neq 0$ . The theorem generalizes as follows:

#### Theorem

Suppose  $X$  is a locally compact Hausdorff space and  $A$  is a sub algebra of  $C_0(X, \mathbb{R})$ . Then  $A$  is dense in  $C_0(X, \mathbb{R})$  (given the topology of uniform convergence) iff it separates points and vanishes nowhere.

### Remark

This version clearly implies the previous version in the case when  $X$  is compact, since in that case  $C_0(X, \mathbb{R}) = C(X, \mathbb{R})$

### Lattice and Boolean Ring versions of Stone-Weierstrass theorem

**Remark:** Let  $X$  be a compact Hausdorff space. Stone's original proof of the theorem used the idea of Boolean rings inside  $C(X, \mathbb{R})$ ; that is subsets  $B$  of  $C(X, \mathbb{R})$  such that  $\forall f, g \in B$ , the functions  $f+g$  and  $\max\{f, g\}$  are also in  $B$ .

### The Boolean ring version of the Stone-Weierstrass theorem

States that suppose  $X$  is a compact Hausdorff space and  $B$  is a family of functions in  $C(X, \mathbb{R})$  such that

1.  $B$  separates points
2.  $B$  contains the constant function 1
3. If  $f \in B$  then  $af \in B \forall a \in \mathbb{R}$
4.  $B$  is a Boolean ring; that is if  $f, g \in B$  then  $f + g \in B$  and  $\max\{f, g\} \in B$  then  $B$  is dense in  $C(X, \mathbb{R})$

### The lattice version of Stone-Weierstrass theorem [10]

#### Theorem 1

States that suppose  $X$  is a compact Hausdorff space with at least two points and  $L$  is a lattice in  $C(X, \mathbb{R})$  with the property that for any two distinct elements  $x$  and  $y$  of  $X$  and any two real numbers  $a$  and  $b$  there exists an element  $f$  in  $L$  with  $f(x)=a$  and  $f(y)=b$ . Then  $L$  is dense in  $C(X, \mathbb{R})$ .

#### Theorem 2

More precisely lattice version can be stated as:

Suppose  $X$  is a compact Hausdorff space with at least two points and  $L$  is a lattice in  $C(X, \mathbb{R})$ .

The function  $\varphi$  in  $C(X, \mathbb{R})$  belongs to the closure of  $L$  iff for each pair of distinct  $x$  and  $y$  in  $X$  and  $\forall \varepsilon > 0, \exists$  some  $f$  in  $L$  for which  $|f(x) - \varphi(x)| < \varepsilon$  and  $|f(y) - \varphi(y)| < \varepsilon$ .

### Generalization of Stone-Weierstrass theorem (Bishop's theorem) [5]

Another generalization of the Stone-Weierstrass theorem is due to the Errett Bishop. Bishop's theorem is as follows (Bishop 1961)

### Theorem (Bishop's theorem) [5, Theorem 1.1]

Let  $A$  be a closed sub algebra of the Banach space  $C(X, \mathbb{C})$  of continuous complex-valued functions on a compact Hausdorff space  $X$ . Suppose that  $f|_s \in A_s \forall$  maximal set  $s \subset X$  such that  $A_s$  contains no non-constant real functions. Then  $f \in A$ .

### A New Version of Stone-Weierstrass Theorem for $(C(X), \|\cdot\|)$ [12]

Due to the fact that the closure of a sub-algebra is a vector sub-lattice of  $C(X)$ , therefore, the sufficient and necessary conditions for a vector sub-lattice  $V$  of  $C(X)$  to be dense in  $(C(X), \|\cdot\|)$  are also the sufficient and necessary conditions for a vector sub-algebra of  $C(X)$  to be dense in  $(C(X), \|\cdot\|)$ . Let's have "The generalized Wierstrass approximation theorem"

### Theorem. Stone-Weierstrass Theorem ("The generalized Wierstrass approximation theorem") [11, Theorem 1.3]

Let  $Z$  be a compact Hausdorff space. A vector sub-lattice or a sub-algebra  $V$  of  $C(Z)$  is dense in  $(C(Z), \|\cdot\|)$  if and only if

- i)  $V$  separates points of  $Z$ , and
- ii) for any  $f$  in  $C(Z)$ , any  $x, y$  in  $Z$ , and any  $\varepsilon$  with  $0 < \varepsilon < 1$ , there is a  $g$  in  $V$  such that

$$|f(x) - g(x)| < \varepsilon \text{ and}$$

$$|f(y) - g(y)| < \varepsilon.$$

### Theorem. New Version of Stone-Weierstrass [12, Theorem 2.2]

Let  $Z$  be a compact Hausdorff space. A vector sub-lattice or sub-algebra  $V$  of  $C(Z)$  is dense in  $(C(Z), \|\cdot\|)$  if and only if

- i)  $V$  separates points of  $Z$ , and
- ii) for any  $x$  in  $Z$ , and any  $\varepsilon$  with  $0 < \varepsilon < 1$ , there is a  $g$  in  $V$  such that  $|1 - g(x)|/\|g\| < \varepsilon$ .

*The contribution/ impact of Stone-Weierstrass theorem to the study of the algebra of continuous functions on a compact Hausdorff space*

As a consequence of the Weierstrass approximation theorem, one can show that the space  $C_{[a,b]}$  is separable: the polynomial functions are dense and each polynomial function can be uniformly approximated by one with rational coefficients; there are only countably many polynomials with rational coefficients.

The Stone-Weierstrass theorem can be used to prove the following statements which go beyond Weierstrass result:

- i. If  $f$  is a continuous real-valued function defined on the set  $[a,b] \times [c,d]$  and  $\varepsilon > 0$ , then  $\exists$  a polynomial function  $P$  in two variables such that  $|f(x,y) - P(x,y)| < \varepsilon \forall x \in [a,b] \text{ and } y \in [c,d]$
- ii. If  $X$  and  $Y$  are two compact Hausdorff spaces and  $f: X \times Y \rightarrow \mathbb{R}$  is a continuous function then  $\forall \varepsilon > 0, \exists n > 0$  and continuous functions  $f_1, f_2, \dots, f_n$  on  $X$  and continuous functions  $g_1, g_2, \dots, g_n$  on  $Y$  such that  $\|f - \sum f_i g_i\| < \varepsilon$ .
- iii. The theorem has many other applications, including: Fourier series, the set of linear combinations of functions  $e_n(x) = e^{2\pi i n x}, n \in \mathbb{Z}$  is dense in  $C_{[0,1] \times [0,1]}$ , where we identify the endpoints of the interval  $[0,1]$  to obtain a circle. An important consequence of this is that the  $e_n$  are an orthonormal basis of the space  $L^2([0,1])$  of the square-integrable function  $[0,1]$ .

## Conclusions

The Stone-Weierstrass theorem is a vital result in the study of the algebra of continuous functions on a compact Hausdorff space. Because polynomials are among the simplest functions and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation.

## Conflicts of interest

Authors declare no conflict of interest.

## References

- [1] Peano G. Calcolo geometrico secondo l'Ausdehnungslehre di H. Grassmann Preceduto dale operazioni della logica deduttiva, Torino. 1888.
- [2] Stone MH. Applications of the theory of Boolean rings to general topology", Transactions of the American Mathematical Society 1937;41(3):375-481, doi: 10.2307/1989788.
- [3] Stone MH. The Generalized Weierstrass Approximation theorem. Mathematics Magazine 1948;21(4):167-84. doi:10.2307/3029750.
- [4] Bohnenblust H, Sobczyk A. Extensions of functionals on complex linear spaces, Bull. Amer. Math. Soc. 1938;44:91-3.
- [5] Bishop, Errett. A generalization of the Stone-Weierstrass theorem", Pacific Journal Mathematics 1961;11(3):777-83
- [6] Minkowski H. Geometric der Zahlen, Teubner. Leipzig. 1896.
- [7] Murray F. Linear transformations in  $L_p, p \neq 1$ . Trans. Amer. Math. Soc. 1936;39:83-100.
- [8] Marlow Anderson, Todd Feil. A First course in Abstract algebra, PWS Publishing company, Boston, International Thomson Publishing Inc. 1995
- [9] Rudin, Walter. Functional analysis, McGraw-Hill, 1973.
- [10] Rudin, Walter. Principles of mathematical analysis(3rd ed), McGraw-Hill, 1976.
- [11] Soukhomlinov, G.A. [1938] On the extension of linear functionals in complex and quaternion linear spaces, Matem. Sbornik 1938;3:353-58.
- [12] Wu HJ. New Stone-Weierstrass Theorem. Advances in Pure Mathematics 2016;6:943-47. <http://dx.doi.org/10.4236/apm.2016.613071>

\*\*\*\*\*