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Abstract

In the present work, we present a mathematical model for the transmission dynamics of COVID-19
under certain constraints. The model formulated is designed into compartments which lead to a system
of differential equations for the transmission dynamics of COVID-19 with control measures. The
stabilities of the model are investigated at several instances. The results showed that the disease free
equilibrium is locally asymptotically stable under assumed conditions on the parameters given in the
model. It was then concluded from the results that putting on masks, proper and frequent sanitation and
educational sensitization are effective methods of controlling COVID-19.
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Introduction

COVID-19 has been a persistent pandemic and
continues to be a global world health issue.
Despite the studies on this disease for over one
year, it is estimated that approximately millions
of people have died from COVID-19 and the
dynamics of the disease indicate that it is
intimately linked to serious inadequate access to
clean water, of access to essential health
services. Most cases of COVID-19 currently
occur in developed countries. Currently,
COVID-19 is severe in India and Bangladesh
near the Bay of Bengal as well as in coastal
regions of South America [1-7]. Cases in these
regions tend to have seasonal circles, generally
associated  with  fluctuations in  water
temperature, zooplankton levels and monsoon
cycles [8].

These pandemics tend to coincide with
dry weather and higher water temperatures while
cases are reduced in winter. Preventative
measures include vaccination, putting on masks,
and washing hands well- all of which is assumed
that people have easy access to these resources
but since most existing models exclude the use
of education based intervention in passing down
the aforementioned strategies in fighting against
the propagation of infectious diseases, this work

IS aimed to better understand the effects of this
measure so as to gain useful guidelines to the
effective prevention and intervention strategies
against COVID-19.

Model formulation

In this study, we consider the SIRP
epidemiological model for COVID-19
transmission by making reasonable improvement
on the work of Fatima and Isthrinayagy [8] with
the incorporation of human treatment, masking,
sanitation and education based intervention
which is assumed to be the control strategies.
Consequently, we introduce another
compartment into the model: the concentration
of COVID-19 on body surface at time (t)
denoted by C, (t). Let
S, (t), I, (t), R, (t) and B, (t) represent the
susceptible, the infected, recovered and the
protected human populations respectively. The
total human Nyx(t)=S,+ I +R_+PF. s
closed, which is a reasonable assumption for a
relatively short period of time and for low
mortality diseases like COVID-19. Various
parameters and definitions are given in table 1.

The Susceptible population is generated
either through birth or through immigration at
rate A..They acquire infection and move to
infected class at the rate:
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Where g,and g, = rates of attracting COVID-19
virus from the water droplets on body surfaces
and through human to human interaction
respectively.

C, =Concentration of COVID-19 virus in body
surface.

K = Concentration of COVID-19 in water
droplets that yields 90% chance of getting it.

I; = Total number of infected individuals.

Table 1. Parameters and definitions

Symbols Definitions
Ay Per capital birth rate of humans.
Hy Per capital natural death rate of
humans.

dyy COVID-19 induced death rate.

ay Rate of exposure to
contaminated water.

Py Loss rate of immunity by
recovered individuals.

By Natural recovery rate.

g Rate of contribution of each
infected person to the population
of COVID-19 in the water
droplets.

Zy Recovery due to the use of
treatment.

M COVID-19 growth rate.

N COVID-19 loss rate.

¢ Net death rate of COVID-19 ie
m-n.

Yu Rate of exposure to education
and its compliance.

n Rate of death of COVID-19 as a
result of water treatment.

K Concentration of COVID-19 in

water droplets that yield 90%

chance of getting it.

Rates of attracting COVID-19

from the body surface.

q,andq.,

The number of infected individuals
decreases through natural recovery from the
disease at the rate of By and Zy is the recovery
due to the use of treatments. 1y is natural death
of an individual anddy is the death rate induced
by the disease. pyls the loss rate of immunity by
the recovered individuals, ¢ is the rate of
contribution of each infected person to the
population of COVID-19 in the aquatic
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environment. o is the net death rate of COVID-
19 gotten by © = m — n, where m is the COVID-
19 growth rate and n is the COVID-19 loss rate.

Variables

= Total number of susceptible individuals.
I; = Total number of infected individuals.
Ry =Total number of recovered individuals.

= The human population called the protected
population.
Ny =Total population of humans.
Cy= Concentration of COVID-19 in body
surface.

The compartmental diagram

The model assumptions are as follows:

a. Susceptible individuals acquire Cholera
at a constant rate.

b. The death in the Infectious class is not
only due to the infection but also natural.

c. Water treatment leads to the death of the
COVID-19.

d. All parameters are considered non-
negative.

Fig. 1 illustrates the compartmental flow
diagram.

Py |— py

X
Y ; PH |
A apl,5
# sy HHOH I By +zy J &,
s £ by +dy _ulH
Cy  |—»7

@
Fig. 1. Compartmental flow diagram

From the analysis and assumptions the
following system is obtained:

ds Crr
d_tH = Ay +puRy— (Mg +vu)Sy — er;,:SH -
Aaly Sy
) (2)
][-I q,Cy
3 = oo S+ GluSa —(uy+dy+ Byt
zy + )y
3
dRH
= ByRy + zyRy — 1Ry —puRy
- (4)
H = YuSu — HuPy )
dC
d_:: ely — (@ + )Gy (6)
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Invariant Region: All state variables remain non-
negative all the time such that
Sy(0) =0,14(0) = 0,R,4(0) = 0,P4(0) =
0,Cy;, = 0.andq, = q,

(7)

Existence of solution

The following theorem validates the existence of
solution of the above models

Theorem 2.1. Derrick and Groosman
[10].Given IVP

x'=f(tx), x(t;) =x, (8)
LetDdenotes

region

It —tol < allx— x5/l £ b, x = (%%, .., %,)
and suppose that f(t x) satisfies the Lipchitz
condition

1£(tx,) — £t %) || < Kllx; — x| 9)
Whenever the pairs (t,x,)and(t,x,) belong to D,
wherekis a positive constant. Then, there is a
constant & = 0 such that there exists a unique
continuous vector solution x(t) of the system in
the intervallt —t,| < &. The condition (9) is
satisfied by the requirement that
Bf;

T = 1,2, ...,nbe continuoous and bounded

1
in D.
Theorem 2.2 (Uniqueness of solution) [9, 15,
16].
LetD denotes the region defined by 1= =R
such that0 < R < e hold, then the solution of
(2)-(6) is unigue and bounded in the regionD.
Proof
Let

L Crr
f; =Ax+ pgRy — (Mg + Yu)Sy — St Sy —

Cy+K

AalySy

(10)
£, =;;ﬁSH + Sy — (uy +dy + By +
Zy +e)ly

(11)
f; = PyRy + ZyRy — uyRy — PuRy

(12)
fs = YuSy — HuPy (13)
f; = ely — (@ +n)Cy

(14)
It suffices to show that %,i,j =1,2,...5 are

=1

continuous.
Consider the partial derivatives:
For f;;
18,/3Sy] = |~y + v20)|.
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19f,/31,) = 0 < o0 = |9f, /3Ry = |F, /3P| = |3F,/3C .

Similarly;
19f,/01yl = | — (ny + dy + By + Zy + ).
10f,/3Sy| = 0 < o0 = |3f, /3R 4| = |9f,/3P,| = |8f,/3C,|.
Similarly;

|0f;/0Ry| = [By + Zy — ny — Pyl
|0, /35| = 0 < w0 = |9f;/01,| = [3f;/dP,| = |0f;/3C, .
Similarly;

|0f, /3Py = | — pyl.
|0f,/3Sy| = 0 < w0 = |91, /01| = [f,/9Ry| = |0f,/dC,].
Finally;
|3f5,-"aﬂv| =|—ql

|0t /08yl = 0 < o0 = |3f, /31| = |0f. /3Ry = |91, /9Py
It is clearly seen that the partial derivatives are
continuous and bounded, implying that the
solutions for (2)-(6) exists and are unique in the
region D. Thus, the proof is complete.

Equilibrium state of the model

To show the disease-free equilibrium for the
system (2)-(6), here, setting'\;—1t = 0, implying
dﬁ: dﬁ: dRH:dPH:de:ﬂ
dt dt dt dt dt
For disease-free state,

Iy =Ry =Cy =0,

So that (2)-(6) has a disease free equilibrium
state of the form:

Ep = (Su Iy Ry Py, Cy) =

( .-*.H 'y'H.-*.H }
pgtvg 0 wglegtyg)

(15)
Estimation of the Basic Reproduction Number

The basic reproduction number denoted by Rq is
an important parameter used to study the
behavior of model, this is defined as the
expected number of secondary cases produced in
a completely susceptible population, by a typical
infective individual. This is a threshold that
determines whether or not; an infection will
spread through a given population.

n=1m= 3sothatx= (I5),Y =(S; + Ry +B;)
where

X = {x,,%,, ..,x,} represents n — infected host compartments.
Y= [}rl, Var e ,yn} represent m — other host compartments.

dx _

. = Filxy) — Vilzy),
d .
i=1,...n ?iL=Gi(x,y), i=1,..,m

F;, = rate at which new infected enter
compartment i.

V.= rate at which transfer of individuals out of
and into ith compartments.
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dx
i F(x)— V(x)

,C
F; = (CQL —+ql)Sy, Vi = (y+dy + By + 2y +9)ly
yTK
61 = N PRy — (b + Y + i + 0,18
1 H Pufu~ e TV¥n C, 1K Q21454
Gy = (Bu+ Zy)Ry — (bu + Pu)Ry
Gy = ¥uSy — MuPy
g q, Ksy
F=|%% ccﬁmz) (16)
0 0
U_(“H+dH+BH+ZH+E 0 )
€ (¢ +n)
(17)
KS !
Ro=FV'l=(q:SH (qui+%3 “H+dH+EH+ZH+S .
0 0

(Mg tdy +By+Zy+e) (@-m)
The reproduction number with control measure
is given as:

— 0, kSy
Ro = (Cy+k)lp+n)
(18)
if Ry < 1 =Asymptotically stableRg =1 =
unstable.
Local Stability of the Disease-Free

Equilibrium (DFE)

In what follows, the local stability of the DFE is
established

Theorem 3.1[15-18]

The disease free-equilibrium of (2)-(6) is locally
asymptotically stable ifR,; < land unstable
otherwise.

Proof

The variational (Jacobian matrix) of the system

formed by (2)-(6) at
—_— A YH-""H ) ] -
E. = H_ 0,0, 0 '

o (HH"'YH uglpg+yy) ) is given by
ﬁ=_( + J i g ﬁ: @z q,KSy
%Sfﬁ Hy CYH "l 0251 dRy pH’acV (C, + K)?

2 Ubv ot _ B
E_ (CV+K qle)J 6IH q: 5y (|,1H+dH—|—EH-|- ZH‘I'S),
of; _  2.KSy afazﬁ s
ac, (Cy+K? 09R, w7 mTHaTPu
of, . of,
dSy Yur 9P, = ~Hy
dfs ot
s . T o+
Ol ac, (¢ +m)

At disease free state E;:
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0y
(HH‘I'YH) - Px 0 0
B rd, o e 0 00
u}{'l'YH H H H H
0 0 Putzs—wy—py O 0
Hy 0 0 —Hy 0
0 3 0 0 —(p+n)
The characteristic equation using |A — 1A], we
obtain

ol
Uy +¥y

—(ug+dg+Pgtzg+e+d) 0 0

0
0 ~(ug+4) 0
£ 0 0 ~(p+n+2)

From which the following eigenvalues are
obtained

Ay =—(ngt vy do =—ny A3 =
(@+n), Ay= Py +Zy— 1y — Py

So that

Qahyg
(HH+YH (I-'I'H +dy + By +2Zy +£)

~(ug+yg+2) Batzg—ug—pg—4 0 =0

)<c

(19)
So that
Dividing both side of (19) by
(Mg +dy+ By +Z4 + =)we obtain
T2y
(ugtyy)lugtdytBy+Zy +5)
(20)

Biologically, by Theorem 3.1, COVID-
19 can be removed from the community
(whenR, < 1) if the initial mass of the
population of the model are in the basin of
attraction of E,. To ensure that elimination of
COVID-19 is independent of the initial sizes of
the populations. It is necessary to show that the
disease-free equilibrium IS globally
asymptotically stable.

Conditions for Global Stability of the disease
free-equilibrium

In this section, conditions that if met, guarantee
the global asymptotic stability of the disease free
state are listed. Set the model equation in the
form:

dax
= =F(X2)

(21)

dz
i G(X,Z), G(X,0)=0.
Where X € R™ denotes the number of uninfected

individuals and Z € R"denotes the number of
/infected individuals including the latent,
infectious etc.U, = (x*,0) denotes the disease
free equilibrium of this system.

The conditions (H1) and (H2) below must be
met to guarantee local asymptotic stability.
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(H1) £ =F(x,0), x"is globally

asymptotically stable.

(H2) G(XZ)=AZ-G(XZ), G(XZ)=0
for(X,Z) e 0.

Where A = Z—;[K‘, 0) is an M-matrix (the off

diagonal elements of Aare nonnegative) and 1 is
the region where the model makes biological
sense.

Then the disease free-disease equilibrium

X = (X%, 0) is globally asymptotically stable
provided that R < 1.

Let
X = (5S4 Ry Py), Z=(14Cy)7T
Ay — (P—]—I + 1F']-I)S]-I
F(X,0) = RH[JBH + ZH] - RH[FH +JDH]

YuSu — BuPy
Checking out for linearity of F(X,0), we obtain:

5u(0) = & S5, (0) ¢ f Ayl itgg) g =R ()bl lenton)
0

t t
Py(t) = e/o419 (B, (0) + [ yyySy e H1% ds).
Next we show that condition (H2) is less than or
equal to zero as follows:
q C!.r
GX.7) = (msﬂ +0plySy — (g +dy +Pg 25 + E]IH)
ely — (@ + MGy

S — (g + dgg + By + 25 +2) W \
J‘:!IZ - q: H U'H H H H (C‘J‘I’K]: (EH]
: ~(p+m/

K
G= (ricv + KF)

0
Here, K = 0. Clearly, u:cf.:mz
thus satisfying H2. It is also clear thatx™ is a
g.a.s equilibrium if:—ir = F(x,0). Hence, by the

above theorem Uy is g.a.s.

>0 sothatG= 0,

Results and Discussion

Numerical results of this model are in a graph
form. Using parameter values stated in table 2,
Mathematica software was used to run the test.
Figure 2 shows that proper enlightenment on
masking, sanitation and social distancing on the
population prone with COVID-19 will reduce
the spread of the infection thereby bringing the
population to a healthy state.

We noticed from the graph that when the
population is exposed and well educated on the
do’s and don’ts, the recovery rate of the infected
humans grows exponentially leading to a drastic

Stability analysis of COVID-19 Model under certain constraints

reduction on the number of people infected with
the disease and on the concentration of the virus.

Table 2. Parameters, description and value

Para-  Description Value  Refe-

meter rence

Ay Per capital birth rate 0590 10
of humans. (day™)

Uy Per capital natural 0761 11
death rate of humans ~ (day ™)

dy,  Cholera induced death 049 10
rate (day™)

a; Rate of exposure to 0.680 13
body surface water
droplets

P Immunity waning rate  0.524 8

(day™)

Zy Rate of recovery of 0998 9
individuals due to (day™)
treatment

B, Natural recovery rate  0.010 6

(day™)

H  Death rate of COVID- 0472 11
19 due to reinfection.

E  Rate of contribution of 0.258 11
each infected person

® Net death rate of 0.163 9
COVID-19

¥y Rate of exposure to 0.854 Estim
education and its ated
compliance

g, Rates of attracting of 0017 14

and COVID-19 (day™)

s

H Death of COVID-19 0.950 Esti-
due to non-masking mated

d, Disease induced death 0.348 14
rate. (day™)

54(0) Susceptible 19999000  Esti-
individuals in the mated
population

I;(0) Infected individuals in 109980  Esti-
the population mated

Ny,  Total human %% Eetij-
population mated

C,  Concentration of 0.992 11
COVID-19 in water
droplets

K  Half saturation of 100 9
COVID-19 in water
droplets

22
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Fig. 2. The graph of education based intervention on a population prone to COVID-19 at time t

With this, the protected humans who are
knowledgeable are not dragged into the struggle
of living right since the understand it’s effect.
Consistency on this practice eventually leads to
gradual dying out of the disease, bringing the
population to a healthy state.

Conclusions

In this research work, we modeled education
base intervention as an added control measure
alongside  with  water  treatment and
environmental sanitation in the dynamics of
COVID-19 in humans, there exists a disease
free-equilibrium state.

Ey = (S Iy Ry Py, Cyp) =

( MY ,0,0, }er-H ’ﬂ)

pgtyy Be(pEt YR

From the findings, the equilibrium point is stable
whenR; < 1, and unstable when
Showing that the control recommended will help
to eradicate the emergence of new infectious
disease. This research work extends results from
existing models by bringing in the education
based intervention measure. We proved the
existence of the model and it having a unique
solution. Using the next generation matrix
method, we determined the basic reproduction
number R;. We showed that the disease free
equilibrium is locally asymptotically stable when

©2021 The Authors. Published by G. J. Publications under the CC BY license.

R, > 1.

Ry, <1 causing the disease to disappear.
Numerically we proved that educating the people
should not be a program that should be done
skeletally but with intense responsibility so as to
achieve effectiveness in curbing COVID-19
from any population under the invasion. Lastly,
social distancing should be considered seriously
in the next research as a major contributor to
spread of the disease.
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