

Research Article

Numerical radii inequalities for derivations induced by orthogonal projections

I. O. Okwany, N. B. Okelo, O. Ongati

School of Mathematics and Actuarial Science,
Jaramogi Oginga Odinga University of Science and Technology,
P. O. Box 210-40601, Bondo-Kenya.

*Corresponding author's e-mail: bnyaare@yahoo.com

Abstract

Let H^n be a finite dimensional Hilbert space and $\delta_{P,Q}$ be a generalized derivation induced by the orthogonal projections P and Q . In this study, authors have approximated the norm of $\delta_{P,Q}$ and showed that $\delta_{P,Q}$ is bounded and is utmost equal to the sum of norms of P and Q . Authors have also considered the linearity and inequalities of in the context of tensor products. Finally, authors have determined the Hilbert-Schmidt and completely bounded norm inequalities for $\delta_{P,Q}$.

Keywords: Hilbert space; Orthogonal projections; Hilbert-Schmidt; Inequalities.

Introduction

Indeed, it was noted in [4] that for any operator $T \in B(H)$ and norm ideal τ in $B(H)$, $\text{diam}(W(T)) \leq \|\delta_\tau\| \|\tau\|$ where 'diam' is the diameter. Furthermore, it was shown that if $T \in B(H)$ is S -universal, and τ a norm ideal in $B(H)$, then $\text{diam}(W(T)) \leq \|\delta_\tau\| \|\tau\|$.

In [17], Rosenblum determined the spectrum of an inner derivation, $\delta_\tau = TP - PT$. Kadison, Lance and Ringrose [16] investigated derivations δ_τ acting on a general C^* -algebra and which are induced by Hermitian operators. Stampfli [20] studied a derivation δ_τ acting on an irreducible C^* -algebra $B(H)$ for all bounded linear operators on a Hilbert space H . The geometry of the spectrum of a normal operator T was used in [16] to show that the norm of a derivation is given by $\|\delta_\tau\| = \inf\{2\|T - \lambda\| : \lambda \in C\}$ using the geometry of the spectrum of normal operator T . Stampfli [20] raised the question on the ability to compute the norm of a derivation on an arbitrary C^* -algebra. Kaplansky [8] later used the density theorem to prove that the extension of derivations of a C^* -algebra to its weak-closure in $B(H)$ [8] is achieved without increasing norm.

Gajendragadkar [8] computed the norm of a derivation on a von Neumann algebra. Specifically it was shown that if φ is a von

Neumann algebra of operators acting on a separable Hilbert space H and $T \in \varphi$ and δ_τ is the derivation induced by T , then $\|\delta_\tau\| \varphi\| = 2 \inf\{T - Z : Z \in C\}$ where C is the center of φ [6]. Given an algebra of bounded linear endomorphisms $L(X)$ for a real or complex vector space X , it was shown that for each element $T \in L(X)$, an operator $\delta_\tau(A) = TA - AT$ is defined on $L(X)$ and $\|\delta_\tau\| \leq 2 \inf_{\lambda} \|T + \lambda I\|$. Furthermore if X is a complex Hilbert space then the norm equality holds [7]. Johnson [7] used a method which applies to a large class of uniformly convex spaces to show that this norm formula does not apply for L^p and $L^p(0,1)$, $1 < p < \infty$, $p \neq 2$. For L^1 spaces, the formula was proved to be true in the real case but not in the complex case when the space has three or more dimensions.

The derivation constant $K(\mathcal{A})$ has been studied for unital non-commutative C^* -algebra \mathcal{A} [2]. Archbold [2] studied $K(M(\mathcal{A}))$ for the multiplier $M(\mathcal{A})$ for a non-unital C^* -algebra \mathcal{A} and obtained two results; that $K(M(\mathcal{A})) = 1$ if $\mathcal{A} = C^*(G)$ for a number of locally compact group G and $K(M(\mathcal{A})) = \frac{1}{2}$ if G is (non-abelian) amenable group. Salah [18] showed that in both finite and infinite dimensional vector spaces, the norm of a generalized derivation is given by $\|\delta_{A,B}\| = \|A\| + \|B\|$ for a pair $A, B \in B(H)$. Okelo in [15] and [14], showed the necessary

and sufficient conditions for a derivation δ_T to be norm-attainable.

Several other results exists on the inequalities of derivations and commutators on C^* -algebras. For instance Kittaneh [9] used a polar decomposition $T = UP$ of a complex matrix T and unitarily invariant norm $\|\cdot\|$ to prove the inequality $\| |UP - PU|^2 \| \leq \| |T^*T - TT^*| \| \leq \| UP + PU \| \| UP - PU \|$.

Williams [22] proved that if a commutator $TX - XA = aI$ is such that A is normal, then the norm relation $\| I - (TX - XT) \| \geq \| I \|$ holds. Anderson [1], generalized Williams inequality and proved that $\| P - (TX - XT) \| \geq \| P \|$. Later, Salah [18] proved that if T and P are normal operators, then $\| I - (TX - XP) \| \geq \| I \|$. The norms of derivations implemented by S -universal operators have been shown to be less than or equal to half the sum of inner derivations implemented by each operator in [5] and in particular was proved that, $\| \delta_{T,P} \| \leq \frac{1}{2} (\| \delta_{T,\lambda} \| + \| \delta_{P,\lambda} \|)$ and $\| \delta_{T,\lambda,P-\lambda} \| \leq \frac{1}{2} (\| \delta_{T,\lambda} \| + \| \delta_{P,\lambda} \|)$. Using unitaries and non-orthogonal projections, Bhatia and Kittaneh [3] determined max-norms and numerical radii inequalities for commutators.

Some authors have used the concept of classical numerical range to study different classes of matrices of operators. For instance, many alternative formulations of (p,q) -numerical range $W_{p,q}(A) = \{E_p((UAU^*)[Q])$ for a unitary U where $1 \leq p \leq q \leq n$ for an $n \times n$ complex matrix X , with $q \times q$ leading principle submatrix $X_{[q]}$ and the p th elementary symmetric functions of the eigen values of $X_{[q]}$ [11]. Chi-Kwong Li [10] extended the results of these formulations to the generalized cases, gave alternative proofs for some of them like convexity and even derived a formula for (p,q) -numerical radius of a derivation as $r_{p,q}(T) = \max\{|\mu| : \mu \in W_{p,q}(T)\}$.

Mohammad [13] applied positive operators in the proof of a similar result. Orthogonal projections being bounded operators, have extensive uses on implementation of derivations and construction of underlying

algebras of the derivations. Vasilevski [21] studied the applications of C^* -algebras constructed by orthogonal projections to Naimark's dilation theorem. Spivack [19] used orthogonal projections to induce a derivation on von Neumann algebras. In [12] Matej used mutually orthogonal projections acting on a C^* -algebra to prove that any local derivation is a derivation.

Basic definitions

Definition 2.1.

Let $T \in B(H)$. For an identity operator I , the set of scalars λ , for which $\det(T - \lambda I)x = 0$ and $x \in H$, are called the eigenvalues (singular values) of T . The set of vectors $x \in H$ for which $\det(T - \lambda I)x = 0$, are called eigenvectors. The set of eigenvalues λ for which $\det(T - \lambda I)x = 0$, is called the spectrum of T and is denoted by $\sigma(T) = \{\lambda \in \mathbb{C} : \det(T - \lambda I)x = 0\}$

Definition 2.2.

Let $\varphi : B(H) \rightarrow B(H)$ be a linear map between operator spaces. For any given $n = 1$, we denote by $\varphi_n : M_n(B(H)) \rightarrow M_n(B(H))$ the linear map defined by $\varphi_n([a_{ij}]) = [\varphi(a_{ij})]$. A map $\varphi : B(H) \rightarrow B(H)$ is called completely bounded (in short c.b.) if $\sup_{n \geq 1} \{\|\varphi_n\|, \varphi_n : M_n(B(H)) \rightarrow M_n(B(H))\} < \infty$.

Definition 2.3.

If $T \in B(H)$, then the operator $T^* : H \rightarrow H$ defined by $\langle Tx, y \rangle = \langle x, T^*y \rangle$ $x, y \in H$ is called the adjoint of T .

Definition 2.4.

An operator $T \in B(H)$ is said to be self-adjoint if $T^* = T$ and if T is linear on a linear subspace M of a Hilbert space H into M it is said to be Hermitian if in addition, $\langle Tx, y \rangle = \langle x, Ty \rangle$, $\forall x, y \in M$

Results and discussion

In this section, we give some numerical radius inequalities for $\delta_{P,Q}$ and also consider inequalities which involve both the numerical radius $w(\delta_{P,Q})$ and its norm $\|\delta_{P,Q}\|$. We will also discuss power inequalities the numerical radius inequalities.

Proposition 3.0.0.

Let $P, Q \in P_0(H)$ and $\delta_{P,Q}(X)$ be positive, then $w(\delta_{P,Q}(X)) \leq w(P^2X + XQ^2) - 2|\langle PXx, XQx \rangle|$

Proof. For some $x \in (H)^n$

$$\begin{aligned} \langle (P - Q)x, x \rangle &\leq \langle (P - Q)^2x, x \rangle \\ &= \langle (P - Q)x, (P - Q)x \rangle \\ &= \langle Px, Px \rangle - 2|\langle Px, Qx \rangle| + \langle Qx, Qx \rangle \\ &= \langle PP^*x, x \rangle - 2|\langle Px, Qx \rangle| + \langle QQ^*x, x \rangle \\ &= \langle P^2x, x \rangle - 2|\langle Px, Qx \rangle| + \langle Q^2x, x \rangle \\ &= \langle (P^2 + Q^2)x, x \rangle - 2|\langle Px, Qx \rangle| \\ \langle (P - Q)x, x \rangle &\leq \langle (P^2 + Q^2)x, x \rangle - 2|\langle Px, Qx \rangle|. \end{aligned}$$

This implies that

$$|\langle (P - Q)x, x \rangle| \leq |\langle (P^2 + Q^2)x, x \rangle| - 2|\langle Px, Qx \rangle|.$$

So for the positive $X \in B(H)$, then

$$|\langle (PX - XQ)x, x \rangle| \leq |\langle (P^2X + XQ^2)x, x \rangle| - 2|\langle PXx, XQx \rangle|$$

and therefore

$$w(\delta_{P,Q}(X)) \leq w(P^2X + XQ^2) - 2|\langle PXx, XQx \rangle|$$

Proposition 3.0.1.

Let $P, Q \in P_0(H)$ and $X \in B(H)$ be positive operators, then

$$\left| \left\langle \begin{bmatrix} X^{\frac{1}{2}}P^{\frac{1}{2}}X^{\frac{1}{2}} & X^{\frac{1}{2}}P^{\frac{1}{2}}Q^{\frac{1}{2}} \\ Q^{\frac{1}{2}}X^{\frac{1}{2}}P^{\frac{1}{2}} & Q^{\frac{1}{2}}X^{\frac{1}{2}}Q^{\frac{1}{2}} \end{bmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix}, \begin{pmatrix} x_n \\ y_n \end{pmatrix} \right\rangle \right| \leq \left\| X^{\frac{1}{2}}(P - Q)X^{\frac{1}{2}} \right\|^2$$

, for a sequence of unit vectors x_n and y_n $n \geq 1$.

Proof. Suppose that P, Q and X are positive.

Then they have positive square roots $P^{\frac{1}{2}}, Q^{\frac{1}{2}}$ and $X^{\frac{1}{2}}$ such that

$$\begin{aligned} \|X^{\frac{1}{2}}(P - Q)X^{\frac{1}{2}}\|^2 &\geq \|X(P - Q)\| = \|X^{\frac{1}{2}}(P - Q)X^{\frac{1}{2}}\| \\ &= \left\| \begin{bmatrix} P^{\frac{1}{2}}X^{\frac{1}{2}} & -X^{\frac{1}{2}}Q^{\frac{1}{2}} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} P^{\frac{1}{2}}X^{\frac{1}{2}} & 0 \\ X^{\frac{1}{2}}Q^{\frac{1}{2}} & 0 \end{bmatrix} \right\| = \\ &= \left\| \begin{bmatrix} P^{\frac{1}{2}}X^{\frac{1}{2}} & 0 \\ X^{\frac{1}{2}}Q^{\frac{1}{2}} & 0 \end{bmatrix} \begin{bmatrix} P^{\frac{1}{2}}X^{\frac{1}{2}} & -X^{\frac{1}{2}}Q^{\frac{1}{2}} \\ 0 & 0 \end{bmatrix} \right\| = \\ &= \left\| \begin{bmatrix} X^{\frac{1}{2}}P^{\frac{1}{2}}X^{\frac{1}{2}} & X^{\frac{1}{2}}P^{\frac{1}{2}}Q^{\frac{1}{2}} \\ Q^{\frac{1}{2}}X^{\frac{1}{2}}P^{\frac{1}{2}} & Q^{\frac{1}{2}}X^{\frac{1}{2}}Q^{\frac{1}{2}} \end{bmatrix} \right\| \end{aligned}$$

let x_n and y_n ($n \geq 0$) be a sequence of unit

vectors in H_n such that

$$\begin{aligned} \langle P^{\frac{1}{2}}XQ^{\frac{1}{2}}y_n, x_n \rangle &\rightarrow \|P^{\frac{1}{2}}XQ^{\frac{1}{2}}\| \\ \text{then } \left| \left\langle \begin{bmatrix} X^{\frac{1}{2}}P^{\frac{1}{2}}X^{\frac{1}{2}} & X^{\frac{1}{2}}P^{\frac{1}{2}}Q^{\frac{1}{2}} \\ Q^{\frac{1}{2}}X^{\frac{1}{2}}P^{\frac{1}{2}} & Q^{\frac{1}{2}}X^{\frac{1}{2}}Q^{\frac{1}{2}} \end{bmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix}, \begin{pmatrix} x_n \\ y_n \end{pmatrix} \right\rangle \right| &\leq \left\| X^{\frac{1}{2}}(P - Q)X^{\frac{1}{2}} \right\|^2 \end{aligned}$$

Theorem 3.0.2.

Let $P, Q \in P_0(H)$, $X \in B(H)$, $0 < a < 1$ and $n \geq 1$. Then

$$2w^n\delta_{P,Q}(X) \leq \|\delta_{P,Q}(X)\|^{2an} + \|\delta_{P,Q}(X)\|^{2n}$$

Proof.

For each unit vector $x \in H$ we have

$$\begin{aligned} \|\langle (PX - XQ)x, x \rangle\| &\leq \\ &\langle \| \end{aligned}$$

$$\begin{aligned} &PX - XQ\|^{2a} \langle x, x \rangle^{\frac{1}{2}} \langle \|(PX - XQ)^*\|^{2(1-a)} \langle x, x \rangle^{\frac{1}{2}} \\ &\leq \left(\frac{\|(PX - XQ)\|^{2a} \langle x, x \rangle^n + \|(PX - XQ)^*\|^{2(1-a)} \langle x, x \rangle^n}{2} \right)^{\frac{1}{n}} \\ &\leq \left(\frac{\|(PX - XQ)\|^{2an} \langle x, x \rangle^n + \|(PX - XQ)^*\|^{2(1-a)n} \langle x, x \rangle^n}{2} \right)^{\frac{1}{n}} \end{aligned}$$

so that

$$\begin{aligned} \|\langle (PX - XQ)x, x \rangle\|^n &\leq \frac{1}{2} \left(\|\|PX - XQ\|^{2an} + \right. \\ &\left. \|(PX - XQ)\|^{2(1-a)n} \langle x, x \rangle \right) \\ &= \frac{1}{2} \left(\|\|PX - XQ\|^{4an} + \|\|PX - XQ\|\|^2 \langle x, x \rangle \right). \end{aligned}$$

Therefore,

$$\begin{aligned} w^n &= \sup \{ \|\langle (PX - XQ)x, x \rangle\|^n : x \in H, \|x\| = 1 \} \\ &\leq \frac{1}{2} (\|P - Q\|^{4an} + \|\|PX - XQ\|\|^2 \langle x, x \rangle) \\ &= \frac{1}{2} \|\|PX - XQ\|^{2an} + \|\|PX - XQ\|\|^2 \|. \end{aligned}$$

Then for an arbitrary $X \in B(H)$, then

$$2w^n(PX - XQ) \leq \|\|PX - XQ\|^{2an} + \|\|PX - XQ\|\|^2\|.$$

Theorem 3.0.3.

Let $P, Q \in P_0(H)$, $0 < a < 1$ and $n \geq 1$.

Then

$$w^{2n}(PX - XQ) \leq a \|\|PX - XQ\|^{2n} + (1 - a) \|\|PX - XQ\|\|^{2n}$$

Proof.

For any unit vector $x \in H$, we have

$$\begin{aligned} \|\langle (PX - XQ)x, x \rangle\|^2 &\leq \|\|PX - XQ\|\|^{2a} \langle x, x \rangle \|\|(PX - XQ)^*\|^{2(1-a)} \langle x, x \rangle \\ &\leq (\|\|PX - XQ\|\| x, x \rangle^a \|\|(PX - XQ)\| x, x \rangle^{(1-a)} \\ &\leq (a(\|\|PX - XQ\|\| x, x \rangle^a + (1 - a)(\|\|PX - XQ\|\| x, x \rangle^n)^{\frac{1}{n}}) \end{aligned}$$

$$\begin{aligned}
&\leq \left(a \left\| (PX - XQ) \right\|_{x,x}^n + (1 - a) \left\langle \left\| (P - Q) \right\|_{x,x}^n \right\rangle^{\frac{1}{n}} \right)^a \\
&= a(2 \left\| (PX - XQ) \right\|_{x,x}^n)^a + a \left\langle \left\| (PX - XQ) \right\|_{x,x}^n \right\rangle^{\frac{1}{n}},
\end{aligned}$$

so that

$$\| (PX - XQ) x, x \|^{\frac{1}{n}} \leq 2(a \left\| (PX - XQ) \right\|_{x,x}^n + a \left\langle \left\| (PX - XQ) \right\|_{x,x}^n \right\rangle^{\frac{1}{n}}).$$

Therefore on post and premultiplication of the operator $P - Q$ by $X \in B(H)$, we obtain

$$\begin{aligned}
w^{2r}(PX - XQ) &= \sup \{ \| (PX - XQ) x, x \|^{\frac{1}{n}} : x \in H, \| x \| = 1 \} \\
&\leq \sup \{ 2(a \left\| (PX - XQ) \right\|_{x,x}^n + a \left\langle \left\| (PX - XQ) \right\|_{x,x}^n \right\rangle^{\frac{1}{n}}) : x \in H, \| x \| = 1 \} \\
&= 2a \left\| PX - XQ \right\|^n + \left\| PX - XQ \right\|^n
\end{aligned}$$

Lemma 3.0.4.

Let $P, Q \in P_0(H)$ be non-zero operators on a complex finite dimensional Hilbert space H . If $\lambda_1, \lambda_2 \in \mathbb{C} \setminus \{0\}$ and $p_1, p_2 > 0$ are such that $\| P - \lambda_1 I \| \leq p_1$ and $\| Q - \lambda_2 I \| \leq p_2$ for an identity matrix $I : H \rightarrow H$, then

$$\| PX - XQ \| \leq 2w(PX - XQ) + \frac{\left| p_1 - p_2 \right|}{2|\lambda_2 - \lambda_1|}.$$

Proof.

From the condition $\| P - \lambda_1 I \| \leq p_1$, we get that $\| (P - \lambda_1) x \| \leq \| P - \lambda_1 I \| \leq p_1$ for an arbitrary vector $x \in H^n$, $\| x \| = 1$. Similarly $\| (Q - \lambda_2) x \| \leq \| Q - \lambda_2 I \| \leq p_2$.

Therefore,

$$\begin{aligned}
\| Px - xQ + (\lambda_2 - \lambda_1)x \| &\leq \| P - Q + (\lambda_2 - \lambda_1)I \| \leq p_1 - p_2.
\end{aligned}$$

Thus

$$\begin{aligned}
\| (P - Q)(x) \|^2 + |\lambda_2 - \lambda_1|^2 &\leq 2\operatorname{Re}[(\lambda_2 - \lambda_1)((P - Q)x, x)] + p_1 - p_2.
\end{aligned}$$

By obtaining the supremum over all

$$\begin{aligned}
x \in H, \| x \| = 1 \text{ in the inequality, we get that} \\
\| P - Q \|^2 + |\lambda_2 - \lambda_1|^2 &\leq 2w(P - Q) |\lambda_2 - \lambda_1| + p_1 - p_2.
\end{aligned}$$

By

applying

$$2 \| P - Q \| |\lambda_2 - \lambda_1| \leq \| P - Q \|^2 + |p_1 - p_2|^2,$$

into the simplified inequality, gives the inequality,

$$2 \| P - Q \| |\lambda_2 - \lambda_1| \leq 2w(P - Q) |\lambda_1 - \lambda_2| + p_1 - p_2.$$

Post and premultiplication of $(P - Q)$ by $X \in B(H)$ gives the desired inequality.

Theorem 3.0.5.

Let $P, Q \in P_0(H)$ be non-zero operators on a complex finite dimensional Hilbert space H and $\lambda_1, \lambda_2 \in \mathbb{C} \setminus \{0\}$, and $p_1, p_2 > 0$ with

$\lambda_1 > p_1$, $\lambda_2 > p_2$. If $\| P - \lambda_1 I \| \leq p_1$ and $\| Q - \lambda_2 I \| \leq p_2$, then $\| PX - XQ \|^2 - \frac{|p_1 - p_2|^2}{|\lambda_2 - \lambda_1|^2} \leq w^2(PX - XQ)$.

Proof.

The inequalities

$$\| P \|^2 + |\lambda_1|^2 - p_1^2 \leq 2|\lambda_1|w(P) \text{ and}$$

$$\| Q \|^2 + |\lambda_2|^2 - p_2^2 \leq 2|\lambda_2|w(Q) \text{ hold and}$$

imply that

$$\| P - Q \|^2 + |\lambda_1 - \lambda_2|^2 - |p_1 - p_2|^2 \leq |\lambda_1 - \lambda_2|w(P - Q)$$

, which further simplifies

$$\| P - Q \|^2 + |\lambda|^2 \leq 2|\lambda|w(P - Q) \text{ for}$$

$$\lambda = \lambda_1 - \lambda_2 \text{ and } p = p_1 - p_2. \text{ Now since}$$

$|\lambda_1| > p_1$ and $|\lambda_2| > p_2$, then $\sqrt{|\lambda|^2 - p^2}$ is

strictly positive and therefore, dividing the simplified inequality by $\sqrt{|\lambda|^2 - p^2}$ is

$$\text{meaningful and yields } \frac{\| P - Q \|^2}{(|\lambda| - p)^{\frac{1}{2}}} + (|\lambda|^2 - p^2)^{\frac{1}{2}}.$$

Using the operator inequality

$$2 \| P - Q \| \sqrt{|\lambda|^2 - p^2} \leq \| P - Q \|^2 + |\lambda|^2 - p^2$$

$$\text{in the inequality gives us } \| P - Q \| \leq \frac{w(P - Q)|\lambda|}{\sqrt{|\lambda|^2 - p^2}}.$$

On fixing the original $\lambda_1, \lambda_2, p_1, p_2$ into the resultant inequality and applying an arbitrary $X \in B(H)$, we get

$$\| PX - XQ \| \leq \frac{w(PX - XQ)|\lambda_1 - \lambda_2|}{\sqrt{|\lambda_1 - \lambda_2|^2 - |p_1 - p_2|^2}}$$

$$\begin{aligned}
&\| PX - XQ \|^2 + |\lambda_1 - \lambda_2|^2 - |p_1 - p_2|^2 \leq \\
&w(PX - XQ)|\lambda_1 - \lambda_2| \| PX - XQ \|^2 |\lambda_1 - \lambda_2| - |p_1 - p_2|^2 \leq w^2(PX - XQ) |\lambda_1 - \lambda_2|^2 \| PX - XQ \|^2 - \frac{|p_1 - p_2|^2}{|\lambda_1 - \lambda_2|^2} \leq w^2(PX - XQ)
\end{aligned}$$

Lemma 3.0.6.

$P, Q \in P_0(H)$ be non-zero orthogonal projections onto H_1, H_{11} , subspaces of H^n and $\lambda_1, \lambda_2 \in \mathbb{C} \setminus \{0\}$, such that $|\lambda_1 - \lambda_2| > p > 0$, then

$$\| PX - XQ \| \leq w(PX - XQ) \leq \frac{2||\lambda|w(P - Q)}{(|\lambda|^2 - p^2)^{\frac{1}{2}}}.$$

Proof.

It is immediate that

$$\begin{aligned}
&\| (PX - XQ) - (\lambda_1 - \lambda_2)x \|^2 = \langle (PX - XQ) - (\lambda_1 - \lambda_2), (PX - XQ) - (\lambda_1 - \lambda_2) \rangle \\
&= \| (PX - XQ)x \|^2 - 2\operatorname{Re}[(\lambda_1 - \lambda_2)((PX - XQ)x, x)] + |\lambda_1 - \lambda_2|^2 \leq p^2 \\
&\Rightarrow \| (PX - XQ)x \|^2 + |\lambda_1 - \lambda_2|^2 \leq 2\operatorname{Re}[(\lambda_1 - \lambda_2)((PX - XQ)x, x)] + p^2 \\
&\leq 2|\lambda_1 - \lambda_2| \| (PX - XQ)x, x \|^{\frac{1}{2}} + p^2
\end{aligned}$$

thus by taking the supremum over all the unit vectors $x \in H^n$, we get

$$\| (PX - XQ)x \|^2 + |\lambda_1 - \lambda_2|^2 \leq 2w(PX - XQ) |\lambda_1 - \lambda_2| + p^2$$

but the reverse of the inequality holds for the norm of the operator $PX - XQ$ thus;

$$\| PX - XQ \| + |\lambda_1 - \lambda_2|^2 \geq 2 \| PX - XQ \| |\lambda_1 - \lambda_2|$$

$$\text{so } \| PX - XQ \| - w(P - Q) \leq \frac{1}{2} \cdot \frac{p^2}{|\lambda_1 - \lambda_2|^2}.$$

For an arbitrary $X \in B(H)$, then the operator $PX - XQ$ also obeys the inequality

$$\| PX - XQ \| - w(PX - XQ) \leq \frac{1}{2} \cdot \frac{p^2}{|\lambda_1 - \lambda_2|^2}$$

Theorem 3.0.7.

Let $P, Q \in P_0(H)$ be as given in the lemma 4.33 above, then

$$\| PX - XQ \|^2 - w(PX - XQ)^2(T) \leq \frac{2p^2}{|\lambda_1 - \lambda_2| + \sqrt{|\lambda_1 - \lambda_2|^2 - p^2}} w(PX - XQ)$$

for an arbitrary $X \in B(H)$

Proof.

From the above lemma 4.43, we have that

$$\| (PX - XQ)x \|^2 + |\lambda_1 - \lambda_2|^2 \leq 2\operatorname{Re}[\lambda_1 - \lambda_2 \langle (PX - XQ)x, x \rangle] + p^2 \text{ for } x \in H^n \text{ and } \| x \| = 1. \text{ We then divide this inequality}$$

by $|\lambda_1 - \lambda_2| |\langle (PX - XQ)x, x \rangle| \geq 0$ so that we get

$$\frac{\| (PX - XQ)x \|^2}{|\lambda_1 - \lambda_2| |\langle (PX - XQ)x, x \rangle|} \leq \frac{2\operatorname{Re}[\lambda_1 - \lambda_2 \langle (PX - XQ)x, x \rangle]}{|\lambda_1 - \lambda_2| |\langle Tx, x \rangle|} + \frac{p^2}{|\lambda_1 - \lambda_2| |\langle Tx, x \rangle|} - \frac{|\lambda_1 - \lambda_2|}{|\langle Tx, x \rangle|}$$

,
for a unit vector
 $x \in H^n$. Now we subtract $\frac{|\langle (PX - XQ)x, x \rangle|}{|\lambda_1 - \lambda_2|}$ from

both sides of the inequality above, we have

$$\begin{aligned} \frac{\| (PX - XQ)x \|^2}{|\lambda_1 - \lambda_2| |\langle (P - Q)x, x \rangle|} - \frac{|\langle (PX - XQ)x, x \rangle|}{|\lambda_1 - \lambda_2|} &\leq \frac{2\operatorname{Re}[\lambda_1 - \lambda_2 \langle (PX - XQ)x, x \rangle]}{|\lambda_1 - \lambda_2| |\langle Tx, x \rangle|} + \frac{p^2}{|\lambda_1 - \lambda_2| |\langle Tx, x \rangle|} \\ &- \frac{|\langle (PX - XQ)x, x \rangle|}{|\lambda_1 - \lambda_2|} - \frac{|\langle (PX - XQ)x, x \rangle|}{|\lambda_1 - \lambda_2|} \\ &= \frac{2\operatorname{Re}[\lambda_1 - \lambda_2 \langle (PX - XQ)x, x \rangle]}{|\lambda_1 - \lambda_2| |\langle (P - Q)x, x \rangle|} - \frac{|\lambda_1 - \lambda_2| - p^2}{|\lambda_1 - \lambda_2| |\langle (PX - XQ)x, x \rangle|} \\ &- \frac{|\lambda_1 - \lambda_2|}{|\lambda_1 - \lambda_2| |\langle (P - Q)x, x \rangle|} \\ &= \frac{2\operatorname{Re}[\lambda_1 - \lambda_2 \langle (PX - XQ)x, x \rangle]}{|\lambda_1 - \lambda_2| |\langle (P - Q)x, x \rangle|} \\ &- \left(\frac{|\sqrt{|\lambda_1 - \lambda_2|^2 - p^2}|}{|\lambda_1 - \lambda_2| |\langle (PX - XQ)x, x \rangle|} - \frac{|\langle (PX - XQ)x, x \rangle|}{|\lambda_1 - \lambda_2|} \right)^2 \\ \frac{|\langle (P - Q)x, x \rangle|}{|\lambda_1 - \lambda_2|} - 2 \frac{\sqrt{|\lambda_1 - \lambda_2|^2 - p^2}}{|\lambda_1 - \lambda_2|} \end{aligned}$$

Because

$$\operatorname{Re}[|\lambda_1 - \lambda_2| \langle (P - Q)x, x \rangle] \leq |\lambda_1 - \lambda_2| |\langle (PX - XQ)x, x \rangle|$$

and

$$\left(\sqrt{|\lambda_1 - \lambda_2|^2 - p^2} |\lambda_1 - \lambda_2| |\langle (PX - XQ)x, x \rangle| - \sqrt{|\langle (PX - XQ)x, x \rangle|} \right)$$

is positive, therefore

$$\frac{\| (PX - XQ)x \|^2}{|\lambda_1 - \lambda_2| |\langle (PX - XQ)x, x \rangle|} \leq \| (PX - XQ)x \|^2$$

$$\leq |\langle (PX - XQ)x, x \rangle|^2 + 2|\langle (PX - XQ)x, x \rangle|(|\lambda_1 - \lambda_2| - \sqrt{|\lambda_1 - \lambda_2|^2 - p^2})$$

Now by taking the supremum over all $x \in H^n$,

$$\| x \| = 1, \text{ we get}$$

$$\| (PX - XQ) \|^2 \leq \sup \{ |\langle (PX - XQ)x, x \rangle|^2 + 2|\langle (PX - XQ)x, x \rangle|(|\lambda_1 - \lambda_2| - \sqrt{|\lambda_1 - \lambda_2|^2 - p^2}) \}$$

$$\leq \sup \{ |\langle (PX - XQ)x, x \rangle|^2 \} + 2(|\lambda_1 - \lambda_2| -$$

$$\sqrt{|\lambda_1 - \lambda_2|^2 - p^2}) \sup \{ |\langle (PX - XQ)x, x \rangle| \}$$

$$= w2((PX - XQ)) + 2(|\lambda_1 - \lambda_2| -$$

$$\sqrt{|\lambda_1 - \lambda_2|^2 - p^2}) w((PX - XQ))$$

Corollary 3.0.8.

Let $\alpha, \beta \in \mathbb{C}$ with $\operatorname{Re}(\alpha, \beta) > 0$. Suppose that $P, Q \in P_0 B(H)$ such that

$$\operatorname{Re}(\beta x - Px, Px - \alpha x) \geq 0 \text{ and}$$

$$\| P - \lambda_1 \| \leq p_1 \text{ hold for } \lambda_1, p_1, \text{ and } x \in H^n,$$

$$\| x \| = 1 \text{ then:}$$

$$\| PX - XQ \| - w2(PX - XQ) \leq [|\beta + \alpha| - 2\sqrt{\operatorname{Re}(\alpha, \beta)}] w(PX - XQ)$$

Conclusions

Authors have shown that the n th power of numerical radius w^n is bounded above by the sums of $\| (PX - XQ) \|^2$ of even powers. We have also shown that $\| PX - XQ \|^2$ is bounded above by the sums multiples of $(PX - XQ)$.

Conflicts of interest

Authors declare no conflict of interest.

References

- [1] Anderson JH, Foias C. Properties which normal operators share with normal derivation and related operators. Pacific J. Math. 1976;61:313-25.
- [2] Archbold RJ. On the norm of an inner derivation of a C^* -algebra. Math. Proc. Camb. Phil. Soc. 1978;84(2):273-91.
- [3] Archbold RJ, Eberhard KB, Sommerset D.W.B. Norms of inner derivations for multiplier algebras of C^* -algebras and groups of C^* -algebras. Journal of Functional Analysis 2012;262:2050-73.
- [4] Bhatia R, Kittaneh F. Inequalities for commutators of positive operators. J. Funct. Anal. 2007;250(1):132-43.

[5] Bonyo JO, Agure JO. Norms of Inner Derivations on Norm ideals. *Int. J. Math. Anal.* 2010;4(14):695-701.

[6] Bonyo JO, Agure JO. Norms of derivations implemented by \mathcal{S} -universal operators. *Int. Math. forum* 2011;5(5):215-22.

[7] Gajendragadkar P. Norm of derivation on a von Neumann algebra ('). *Transactions of the American Mathematical Society* 1972;170:165-70.

[8] Johnson BE. Norms of derivations on $\mathcal{L}(\mathcal{X})$, *Pacific Journal of Mathematics* 1971;38(2):465-9.

[9] Kaplansky IM. Modules over operators algebras. *Amer. J. Math.* 1953;75:839-58.

[10] Kittaneh F. *Linear Algebra and its Applications*, Elsevier Science Inc., New York, 1994.

[11] Li CK, Woerdeman HA. Problem on the $(1, k)$ -numerical radius. *Linear and Multilinear Algebra* 2019;22(3):739-50.

[12] Li CK, Tsing NK, Uhling F. Numerical range of an operator on an indefinite inner product space. *International Linear Algebra Society* 1996;1:1-17.

[13] Matej B. Characterizations of Derivations on Some Normed Algebras with Involution. *Journal of Algebra* 1992;152:454-62.

[14] Mohsen EO, Mohammad SM, Niknam A. Some numerical radius inequalities for Hilbert Space operators. *Journal of Inequalities and Applications* 2009;2(4):471-8.

[15] Okelo NB, Agure JO, Ambogo DO. Norms of Elementary Operator and Characterizaion of Norm-attainable operators. *Int. J. Math. Anal.* 2010;4(24):1197-204.

[16] Okelo NB, Agure JO, Oleche PO. Certain conditions for norm-attainability of elementary operators and derivations. *Int. J. Math. Soft Computing* 2013;3(1):53-9.

[17] Ringrose JR. Automatic continuity of derivations of operator algebras *J. London Math. Soc.* 1972;5(2):432.

[18] Rosenblum M. On the operator equation $BX - ZA = Q$. *Duke Math. J.* 1956;23:263-9.

[19] Salah M. Some recent results on operator commutators and related operators with applications. *Journal of Mathematical Inequalities* 2019;13:1129-1146.

[20] Spivack M., Derivations on commutative operator algebras, *Bull. Austral. Math. Soc.* 1985;32:415-18.

[21] Stampfli JG. A norm of a derivation, *Pacific Journal of Mathematics* 1970;33(3): 737-47.

[22] Vassili G. *Functional Analysis I*, Springer Verlag, Berlin 2011.

[23] Weber RE. *Derivations And The Trace-Class Operators*. *Proc. Amer. Math. Soc.* 1979;3(1):79-82.
