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Abstract 

In the present work, authors considered norm preserver conditions for automorphisms on unital 

C∗-algebras. This is done by first establishing sufficient conditions for which a surjective map 

between unital C∗-algebras is an algebra automorphism. 
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Introduction 

In preserver problems, one of the most basic 

questions we seek to answer is whether an 

operator between two spaces with the same 

structure is a homomorphism [1]. In particular, we 

ask whether the operator T : V → W preserves the 

operation in this spaces, that is , we ask if T (m ∗n) 

= T (m) ∗ T (n), where ∗ is the operation in V in 

the first case and the operation in Y in the second 

case [2]. If in case T does preserve the operation, 

then f is called a homomorphism and we can apply 

any of the results we know concerning the spaces 

V and W and homomorphisms between them.  

One of the first interesting preserver 

problem was by [3] in which It was required that 

the operator T be surjective and to preserve the 

zero element and the distances between elements. 

The last property is merely the definition of an 

isometry, so it was not surprising that the 

conclusion was that T is an isometric 

transformation thus bringing in linearity hence 

making a statement about norms. Although 

Mazur-Ulam Theorem [4] does not assume that a 

map is linear from the beginning, many of the 

classical results in the area of preserver problems 

assume the map to be linear and to preserve some 

other property that then leads to a conclusion 

categorizing such maps.  

The Mazur-Ulam Theorem [5]   goes 

against the usual way of doing things by first 

verifying a norm condition then concluding that 

the map is linear. In linear preserver problems, the 

maps are between algebras and the maps are 

assumed to be linear. A part from the maps being 

linear, they also preserve some other property that 

then leads to a conclusion classi- fying such maps. 

An example of one such result is the Gleason-

Kahane-Zelazko Theorem [6]. When the mapping 

in Kahane-Zelazko Theorem was strengthened to 

be surjective from a uniform algebra to a uniform 

algebra and preserves the spectra of algebra 

elements, the results goes beyond concluding that 

the mapping is multiplicative to preserving the 

distance between algebra elements and the 

structure of the algebra.  

Banach-Stone Theorem [7] is another 

example of such result that establishes an 

isometric algebra isomor- phism between spaces 

of continuous functions on compact spaces. The 

Gleason-Kahane- Zelazko Theorem [8], apart 

from having a spectral condition, it also required 

the mapping T : U −→ Y to be a linear operator. 

There are several other results that require 

preservation of all or part of the spectra of the 

elements of the algebra or a subset of the elements 

of the algebra but do not require the mapping T to 

be linear. The first of such results was Kowalski 

and Slodkowski [9] which demanded that the 

spectrum of the difference between algebra 

elements be preserved in order to have the 

mapping preserve the algebraic structure as well 

as the distance between algebra elements. The 

spectral condition in the results implied that ǁTm − 
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Tnǁ = ǁm − nǁ , ∀m, n ∈ G, that is, T preserves 

distances be- tween the algebra elements. This 

spectral condition brought the isometry conclusion 

which was not a surprise. We also see that the 

Mazur-Ulam Theorem [10] implies that T is an 

R−linear mapping, so the additivity requirement 

for an isomorphism is met. Unital operators are 

mappings that preserve the unit element that is the 

mapping T : V −→ W between unital algebras has 

the property T (1V ) = 1W. Spectral preserver 

problems started taking a multiplicative direction 

where the unit element was to be preserved. One 

such result was from [11] which was extended by 

Rao and Roy to surjective self-maps from any 

uniform algebra to itself and for an arbitrary 

compact Hausdorff set P .  

The results in [2] were significantly 

improved, one year later, by [3]. This was done by 

allowing T to be an operator between any two 

uniform algebras instead of requiring it to be a self 

-map and by only requiring the preservation of a

subset of the spectra (the peripheral spectra) of

products of algebra elements. For algebra

elements m and n, if σ(m) = σ(n) then σπ(m) =

σπ(n) but not vice versa. Later [6] extended this

theorem to standard operator algebras. Luttman

and Tonev were joined with lambert to show that

instead of the preservation of the peripheral

spectra of products of algebra elements, T need

only preserve at least one element of the

peripheral spectra of products. The requirement

that T be unital was removed and added the

requirement that T preserve the peripheral spectra

of all algebra elements. However, this requirement

is not more than the previous results because the

theorem requires that T be unital, in which case

σπ(Tm) = σπ(TmT 1) = σπ(m · 1) = σπ(m), so a

map that satisfies the hypothesis of theorem does

in fact preserve the peripheral spectra of algebra

elements. The proofs of these theorems largely

depend on variations of the classical result by [2]

which was refined by   [5]. A stronger version of

the lemma is found in [9]. In [8] the authors took

the additive direction by showing that a surjection

that preserves the peripheral spectra of sums of

algebra elements as well as the sup-norms of the

sums of the moduli of algebra elements will

preserve the distances between algebra elements

as well as the structure of the algebra.

Research methodology 

As we have seen, the set of linear multiplicative 

functionals on a commutative Banach algebra 

and the set of maximal ideals for that algebra are 

in bijective correspondence, so we can make the 

following definition. 

Definition 2.1.  

Let  D be a commutative Banach algebra with 

unit. The set MD of all nonzero linear 

multiplicative functionals of D is called the 

maximal ideal space of D. Though the space MD 

does not possess a natural algebraic structure, we 

can equip it with the weak−∗topology it inherits 

as a subset of D∗, the collection of all bounded 

linear functionals on D. When applied to the 

maximal ideal space, we call this toplolgy the 

Gelfand topology. We recall that under this 

topology, a net of elements φα in MD tends to φ ∈ 

MD if and only if φα(m) → φ(m), ∀m ∈ D. 

Thus, under the Gelfand topology, convergence 

of functionals in MD is point wise convergence. 

A weak−∗ limit of linear multiplicative

functionals is itself a non-zero linear 

multiplicative functional because (lim φα)(1) = 

lim φα(1) = 1. We also note that the space MD 

is compact in the weak−∗topology by the

Banach-Alaoglu theorem. 

Definition 2.2. 

Let m be an element in a commutative Banach 

algebra D. The Gelfand transform of m is the 

function m̂  on MD  defined by m̂ (φ) = φ(m), 

∀φφ ∈ MD. The Gelfand transform of m is clearly 

continuous on MD with respect to the Gelfand 

topology since if φα → φ, then φα(m) → φ(m), 

which implies that m̂ (φα) → m̂ (φ). 

Results and discussion 

In this section, we present our results. We use the 

fact that if X ⊂ C(P ) and Y ⊂ C(S) will be 

uniform algebras on compact sets P and S 

respectively and Since X and Y are sub algebras 

of the unital C∗-algebra A and also C(S) being 

isomorphic to the unital C∗-algebra A, the results 

discussed in this Chapter concerning uniform 

algebras can be extended to unital C∗ -algebra 

and isomorphism changed to automorphism 

since the transformation will be in the same 

space. The following proposition gives sufficient 

conditions under which surjective maps, in unital 

C∗-algebra, are automorphisms. 
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Proposition 3.1.   

If ϕ : S −→ P  is homeomorphism and if T  : X ⊂ A 

−→ C(S) ∼= A is a surjection defined by T m  =  m 

◦ ϕ∀f  ∈ X  ⊂ A,  then T  is linear,  multiplicative, 

injective, and continuous then it is an isometric 

algebra isomorphism. 

Proof. Let m, n ∈ A and λ,µ ∈ C. Then 

T (λm + µn = (λm + µn) ◦ ϕ) = λ(m ◦ ϕ) + 

µ(n ◦ ϕ) = λTm + µTn, so T is linear. Also, 

T is multiplicative because 

T (mn) = (mn) ◦ ϕ = (m ◦ ϕ)(n ◦ ϕ) = TmTn. 

Because ψ is a homeomorphism, it is 

surjective, so T is injective.  Finally, the 

continuity  of T follows from the linearity of 

T and the inequality 

ǁTmǁ = supy∈S |m(ϕ(y))| ≤ ǁf ǁ. 

If Tm = m ◦ ϕ, then we call T a ϕ−composition 

operator. If T : X −→ Y is a ϕ−composition 

operator, then T satisfies the equation ǁ|Tm| + 

|Tn|ǁ = ǁ|m| + |n|ǁ  

for every m, n ∈ A since the fact that ϕ is a 

homeomorphism implies that 

ǁ|Tm| + |Tn|ǁ = ǁ|m ◦ ϕ| + |n ◦ ϕ|ǁ= ǁ|m| + |n|ǁ. 

The map T also satisfies the equations ǁTm + 

Tnǁ = ǁm + nǁ and ǁλTm + µTnǁ = ǁλm + 

µnǁ, for every m, n ∈ A and λ,µ ∈ C since 

ǁλTm + µTnǁ = ǁλm ◦ ϕ + µn ◦ ϕǁ = ǁλm + 

µnǁ ∀λ,µ ∈ C 

In particular, for λ = µ = 1, proving that T 

satisfies ǁTm + Tnǁ = ǁm + nǁ. 

We also have the following preservation of 

relationships among the peripheral 

spectra:σπ(Tm) = σπ(m ◦ ϕ) =σπ(Tm + Tn) 

= σπ(m + n). This completes the proof. 

 Next, we  show that a surjective 

operator T : X ⊂ A −→ Y ⊂ A that satisfies 

certain conditions naturally induces a 

homeomorphism between the Choquet 

boundary   of X and the Choquet boundary 

of Y . 

Definition 4.2.  

An operator T : X ⊂ A −→ Y ⊂ A is norm-

additive in modulus if it satisfies 

maxx∈P |(Tm)(x)| + |(Tn)(x)| = maxx∈P |m(x)| 

+ |n(x)|, ∀m, n ∈ X. 

Example 4.3.  

The operator T : X ⊂ A −→ Y ⊂ A for which Tm = 

im is a norm-additive in modulus because ǁ|Tm| + 

|Tn|ǁ = ǁ|im| + |in|ǁ= |i| ǁ|m| + |n|ǁ= ǁ|m| + |n|ǁ . 

Where the operation T : X ⊂ A −→ Y ⊂ A for 

which Tm = −m is similarly norm-additive in 

modulus. In fact , all operators T : X ⊂ A −→ Y 

⊂ A such that Tm = αm with αα ∈ X ⊂ A and 

|α(x)| = 1, ∀ ∈ P are norm-additive in modulus 

since ǁ|Tm| + |Tn|ǁ = ǁ|αm| + |αn|ǁ= |α| ǁ|m| + |n|ǁ= 

ǁ|m| + |n|ǁ . 

Example 4.4.  

The operator T : X ⊂ A −→ Y ⊂ A defined by 

Tm = ǁmǁ , ∀m ∈ X ⊂ A 

is also norm-additive in modulus: ǁ|Tm| + |Tn|ǁ 

= ǁ|ǁmǁ| + |ǁnǁ|ǁ= ǁ|m| + |n|ǁ . 

We note that this operator does not preserve 

|m| unless m is a constant function. Clearly, 

for any norm-additive in modulus operator, 

we have T 0 = 0 since 

0 = ǁ|0| + |0|ǁ= ǁ|T 0| + |T 0|ǁ= 2 ǁ|T 0|ǁ implies 

that |T 0| = 0. Also, an operator that is 

norm-additive in modulus is norm- 

preserving since 

ǁTmǁ = ǁ|Tm| + |T 0|ǁ= ǁ|m| + |0|ǁ= ǁmǁ 

Another example of norm-additive in 

modulus operators is given by the next 

proposition 

Lemma 4.5.  

An operator T : X ⊂ A −→ Y ⊂ A that satisfies 

ǁTm + αTnǁ = ǁm + αnǁ , ∀m, n ∈ X ⊂ A 

and α with |α| = 1 is norm-additive in modulus. 

 

Proof. If T : X ⊂ A −→ Y ⊂ A satisfies 

ǁTm + αTnǁ = ǁm + αnǁ , ∀m, n ∈ X ⊂ A 

and α = 1 is norm-additive in modulus, 

then we can choose an α with |α| = 1 such 

that 

ǁ|Tm| + |Tn|ǁ = ǁ|Tm| + |αTn|ǁ= ǁ|Tm + 

αTn|ǁ= ǁ|m + αn|ǁ≤ ǁ|m| + |αn|ǁ= ǁ|m| + |n|ǁ . 

Similarly, ǁ|m| + |αn|ǁ ≤ ǁ|Tm| + |Tn|ǁ, so T is 

norm-additive in modulus. 

Definition 4.6.  

An operator T : X ⊂ A −→ Y ⊂ A is monotone 

increasing in modulus if the inequality |m(x)| ≤ 

|n(x)| on ∂X implies that |(Tm)(y)| ≤ |(Tn)(y)| on 

∂Y, ∀m, n ∈ X. 

Example 4.7.  

The operators Tm = αm for α ∈ X with |α| = 1 

given in Example ... as norm-additive in modulus 
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j=1 

T 

are also monote increasing in modulus since if |m(x)| ≤ 

|n(x)|, then 

|(αm)(x)| = |α(x)| |m(x)|= |m(x)|≤ |n(x)|= 

|α(x)| |n(x)|= |(αn)(x)| . 

The next proposition provides a connection 

between monotone increasing in modulus 

operators and norm-additive in modulus 

operators. 

Proposition 4.8.  

A norm-additive in modulus operator is monotone 

increasing in modulus. 

Proof. Let T : X ⊂ A −→ Y ⊂ A be a norm-

additive in modulus operator. If |m(x)| ≤|n(x)| 

on ∂X, then clearly ǁ|m| + |p|ǁ ≤ ǁ|n| + |αp|ǁ for 

any p ∈ X ⊂ A. Because T is norm-additive 

in modulus, we have that ǁ|Tm| + |Tp|ǁ = ǁ|m| 

+ |p|ǁ ≤ ǁ|n| + |p|ǁ = ǁ|Tn| + |Tp|ǁ.  

Assume that there is some bo ∈ ∂Y such that 

|(Tm)(bo)| > |(Tn)(bo)|. 

Because δY is dense in ∂Y , we may assume 

that bo ∈ δY . choose a ω > 0 such that 

|(Tn)(bo)| < ω < |(Tm)(bo)| 

and an open neighborhood N of bo in Y ⊂ 

A such that |(Tn)(bo)| < ω on N . Let r be a 

real number greater than 1 such that ǁTmǁ , 

ǁTnǁ ≤ r and let Tp ∈ Pbo (Y ) be a peaking 

function for Y with E(Tp) ⊂ N , so (Tp)(bo) 

= 1 and |(Tp)(b)| < 1 for any b ∈ ∂Y \N . By 

replacing Tp with a sufficiently high 

power of Tp, we have 

|(Tn)(b)| + |r(Tp)(b)| < r + ω, ∀b ∈ ∂Y \N . 

This inequality also holds on N because 

|(Tn)(b)| < ω, ∀b ∈ N and |(Tp)(b)| ≤ 1 for all b 

∈ Y . Thus we have that |(Tn)(b)| + |r(Tp)(b)| < 

r + ω, ∀b ∈ ∂Y . 

|(Tm)(bo)| + r = |(Tm)(bo)| + r |(Tp)(bo)| 

≤ ǁ|Tm| + r |Tp|ǁ≤ ǁ|Tn| + r |Tp|ǁ 

Therefore, |(Tm)(bo)| < ω, which is a 

contradiction. Hence,|(Tm)(b)| ≤ |(Tn)(b)| , ∀b 

∈ ∂Y . 

This holds for every p = 1, ..., n, so E(Tn) 

⊂E(Thj).  Hence  the  family  E(Th) : h ∈ 

εx(X)  has  the finite intersection property, as 

claimed. Because each E(Th) is a closed 

subset of S, a compact set, the family E(Th) : 

h ∈ εx(X) must have a non-empty 

intersection. We observe that the set E(Tm) 

= (Tm)
−1

(σπ(Tm)) is a union of peak sets 

because (Tm)
−1

(u) is a peak set for any u ∈ 

σπ(Tm). Thus, every b ∈ Ex belongs to an 

intersection F ⊂ Ex of peak sets of Y . 

Therefore, F meets δY and thus Ex∩δY ƒ= ∅. 

We note that [2]  considered sets similar to 

Ex that involve peaking functions instead of 

C−peaking functions but also require T to 

preserve the peripheral spectra of all algebra 

elements. 

Lemma 4.9.  

Let T : X ⊂ A −→ Y ⊂ A be a norm-additive in 

modulus, R+−homogeneous, surjective operator. 

If a ∈ δX and b ∈ Ex ∩ δY , then T 
−1

(εb(Y )) ⊂ 

εa(X). 

Proof. Let a ∈ δX. If T is R+−homogeneous, 

surjective, and norm-additive in modulus, 

then T  is monotone increasing in modulus 

and norm-preserving, as we have seen, so 

Ex=∅.  Let b ∈ Ex, fix a p ∈ εb(Y ), and let h 

∈ T 
−1

(p).  In order to prove that h ∈ εaX, we  

must  show  that  |h(a)| = ǁhǁ.  Let  N  be an  

open  neighborhood of a  and  let  k  ∈ ǁhǁ · 

Pa(X) be a  C−peaking  function  such  that  

E(k) ⊂ N .  Because b ∈ Ex  = m∈εa(X) 

E(Tk) ⊂ E(Tk), we  have  that  |(Tk)(b)| = 

ǁTkǁ, which  implies  that  Tk ∈ εb(Y ) 

Because T preserves the norms,|p(b)| = ǁpǁ = 

ǁhǁ = ǁkǁ = ǁTkǁ. Thus, because T is norm-

additive in modulus, 

ǁhǁ + ǁkǁ ≥ ǁ|h| + |k|ǁ = ǁ|p| + |Tk|ǁ ≥ |p(b)| + 

|(Tk)(b)| = ǁpǁ + ǁTkǁ = ǁhǁ + ǁkǁ.  

Therefore , ǁ|h| + |k|ǁ = ǁhǁ+ǁkǁ, so there must 

be an aN ∈ ∂X such that |h(aN )| = ǁhǁ and 

|k(aN )| = ǁkǁ. Hence , aN ∈ E(k) ⊂ N and any 

neighborhood N of a must contain a point aN 

with |h(aN )| = ǁhǁ. Because h is continuous, 

we must have |h(a)| = ǁhǁ, which implies that 

h ∈ εa(X). Thus, T 
−1

(εb(Y )) ⊂ εa(X). 

Theorem  4.10.  

If T : X ⊂ A −→ Y ⊂ A is a norm-additive in 

modulus, R+−homogeneous surjection, then the set 

Ex is a singleton that belongs to δY for any generalized 

peak point a ∈ δY . 

Proof.  Let b ∈ Ex  and suppose there is a r ∈ 

Ex\b.  Then there is a function p ∈ εb(Y ) 

such that |p(r)| < ǁpǁ. For any h ∈ T 
−1

(p) ⊂ 

εa(X), we have E(p) = E(Th) ⊃ Ex, which 

implies that the function |p| = |Th| is a 

constant on Ex with value ǁpǁ. This is a 

contradiction to |p(r)| < ǁpǁ. Hence, the set Ex 

contains only the point b. We see that T  

induces an associated mapping τ  : δX  ⊂ A 
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T 

−→  δY  ⊂ A  such that a −→ τ (a). From this 

mapping τ we  will obtain the 

homeomorphism that will allow us  to 

conclude that a map T satisfies certain of 

the conditions  is an algebra automorphism. 

We see that ετ(a)(Y ) = εb(Y ) ⊂ T (εa(X)). If 

h ∈ εa(X), then  we have that τ (a) = Ex ⊂ 

E(Th). Hence,|(Th)(τ (a))| = ǁThǁ = ǁhǁ = 

|h(a)|, for any h ∈ εa(X). We note that if h ∈ C 

· Pa(X) and T preserves the peripheral spectrum 

of h, that is σπ(Th) = σπ(h), then |(Th)(τ 

(a))| = ǁThǁ = ǁhǁ = |h(a)| implies that (Th)(τ 

(a)) = h(a) since the peripheral spectra are 

singletons. We also note that, in [4], the 

authors  considered a mapping similar to  τ 

that mapped each a ∈ P  to the singleton set   

h∈Pa(X) E(Th).  In that paper, the operator 

T : X ⊂ A −→ Y ⊂ A was assumed to be 

peripherally-additive that is σπ(Tm + Tn) = 

σπ(m + n), ∀m, n ∈ X and thus preserved the 

peripheral spectrum for every m ∈ X. 

Corollary 4.11.  

If T : X ⊂ A −→ Y ⊂ A is a norm-additive in 

modulus, R+−homogeneous surjection, then T 

(εa(X)) = ετ(a)(Y ). 

Proof. Let h ∈ εa(X) for some a ∈ δX ⊂ A 

and let p = Th. Then equation gives 

 |p(τ (a))| = |(Th)(τ (a))| = 

|h(a)| = ǁhǁ = ǁpǁ  

This implies that p ∈ ετ(a)(Y ), so T (εa(X)) ⊂ 

ετ(a)(Y ) and, frrom Lemma 4.1.7, we have 

that T (εa(X)) ⊃ ετ(a)(Y ). 

The next proposition shows that when T is a 

norm-additive in modulus, 

R+1−homogeneous surjection, (4.10) holds 

for every m ∈ X ⊂ A and a ∈ δX ⊂ A, not 

merely for functions that take their maximum 

modulus at a. 

Proposition 4.12.  

If T : X ⊂ A −→ Y ⊂ A is a norm-additive in 

modulus , R+−homogeneous surjection, then the 

associated mapping τ that T induces is continuous 

and the equation |(Tm)(τ (a))| = |m(a)|,holds 

for every a ∈ δX ⊂ A and all m ∈ X ⊂ A. If, in 

addition, T is bijective, then τ is a 

homeomorphism from δX ⊂ A onto δY ⊂ A, and 

if ψ : δY ⊂ A −→ δX ⊂ A is the inverse mapping 

of τ , then |(Tm)(b)| = |m(ψ(b))| for every b ∈ 

δY ⊂ A 

Proof. We first  show  that |(Tm)(τ (a))| = |m(a)| , 

∀a ∈ δX  ⊂ A  and  ∀m ∈ X  ⊂ A.  Let a ∈ δX  

⊂ A, m ∈ X ⊂ A  and r  be a real number 

greater than 1.  If ho  ∈ r ǁmǁ · PaX is    a 

function as in the strong Additive Bishop’s 

lemma,  then ǁThoǁ = ǁhoǁ = r ǁmǁ = r ǁTmǁ. 

So, Tho ∈ r ǁTmǁ · ετ(a)(Y ). Because T is norm-

additive in modulus, it implies that 

r ǁmǁ + |m(a)| = infh∈εa(X),ǁhǁ=rǁmǁ ǁ|h| + 

|m|ǁ 

                     = infh∈εa(X),ǁhǁ=rǁmǁ 

ǁ|Tm(b)| + |Th|ǁ 

                      = infp∈ετ (a)(X),ǁhǁ=rǁmǁ 

ǁ|Tm| + |p|ǁ 
                         = ǁmǁ + |(Tm)(τ (a))| 

Consequently, |(Tm)(τ (a))| = |m(a)|, as 

claimed. To show the continuity of τ , we 

let a ∈ δX and k ∈ (0, 1). Choose an open 

neighborhood N of τ (a) in δY and a 

peaking function p ∈ Pτ(a)(Y ) such that E(p) 

⊂ N and |p(b)| < k on δY \N . If h ∈ T 
−1

(p), 

then h ∈ εa(X), and , according to , we have 

|h(a)| = |(Th)(τ (a))| = |p(τ (a))| = 1 > k. 

Therefore, the open set W = ξ ∈ δX ⊂ A : 

|h(ξ)| > k contains a. The first part of the 

proof shows that for every ξ ∈ W, we 

have|p(τ (ξ))| = |(Th)(τ (ξ))| = |h(ξ)| > k, 

which implies that τ (ξ) ∈ N since |p(η)| < k for 

η ∈ δY \N . Consequently, τ (W) ⊂ N , so τ is 

continuous. Now suppose that T is bijective. 

Then T 
−1

 is R+−homogeneous, and because 

the equation ǁ|Tm| + |Tn|ǁ = ǁ|m| + |n|ǁ is 

symmetric with respect to m and Tm, it must 

also hold for the operator T 
−1

 : Y −→ X. 

Now T 
−1

 induces an associated map ϕ  :  δY  

⊂ A  −→  δX ⊂ A that is continuous and 

satisfies |(T 
−1

p)(ϕ(η))| = |p(η)| , ∀η ∈ δY ⊂ 

A and for any  p  ∈ εϕ(η)(Y ). Let a  ∈ δX  ⊂ 

A  and b  =  τ (a)  ∈ δY  ⊂ A.  If h  ∈ εa(X), 

then  p = Th ∈ εb(Y ), so 

|h(ϕ(b))| = |(T 
−1

(p))(ϕ(b))| = |p(b)| = 

|(Th)(b)| = |(Th)(τ (a))| = |h(a)| = ǁhǁ. 

Hence, ϕ(b) ∈ E(h) for any h ∈ εa(X). 

Because 
T

h∈εa(X) E(h) = x, we see that 

ϕ(τ (a)) = ϕ(b) = a, ∀a ∈ δX ⊂ A. 

Similarly, τ (ϕ(b)) = b, ∀b ∈ δY ⊂ A. Thus, τ 

and ϕ are both bijective and ϕ = τ 
−1

, so τ is a 

homeomorphism. The rest is clear. 
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Conclusions 

In   summary, we have determined sufficient 

conditions for which a surjective map 

between unital C∗-algebras is an algebra 

automorphism, we have shown that If A is a 

unital C∗-algebra which is commutative then 

it is isomorphic to the space C(P ) of all 

continuous functions on a compact set P and 

uniform algebra is a sub algebra of the space 

C(P ) . Therefore if X ⊂ C(P ) and Y ⊂ C(S) 

are uniform algebras with Choquet boundary 

δX and δY , it is shown that if T : X −→ Y is 

a surjection that preserves the norm of the 

sums of the moduli of algebra elements, 

then T induces a homoemorphism ϕ 

between the Choquet boundaries of X and Y 

such that |Tm| = |m ◦ ϕ| on the Choquet 

boundary of Y . If, in addition, T preserves 

the norms of all linear combi- nations of 

algebra elements and either preserves both i 

and 1 or the peripheral spectra of C-peaking 

function, then T is a composition operator 

and thus an algebra automorphism. 
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