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Abstract

In the present work, authors considered norm preserver conditions for automorphisms on unital
C+-algebras. This is done by first establishing sufficient conditions for which a surjective map
between unital C+-algebras is an algebra automorphism.
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Introduction

In preserver problems, one of the most basic
questions we seek to answer is whether an
operator between two spaces with the same
structure is a homomorphism [1]. In particular, we
ask whether the operator T : V — W preserves the
operation in this spaces, that is , we ask if T (m n)
=T (m) = T (n), where = is the operation in V in
the first case and the operation in Y in the second
case [2]. If in case T does preserve the operation,
then f is called a homomorphism and we can apply
any of the results we know concerning the spaces
V and W and homomorphisms between them.

One of the first interesting preserver
problem was by [3] in which It was required that
the operator T be surjective and to preserve the
zero element and the distances between elements.
The last property is merely the definition of an
isometry, so it was not surprising that the
conclusion was that T is an isometric
transformation thus bringing in linearity hence
making a statement about norms. Although
Mazur-Ulam Theorem [4] does not assume that a
map is linear from the beginning, many of the
classical results in the area of preserver problems
assume the map to be linear and to preserve some
other property that then leads to a conclusion
categorizing such maps.

The Mazur-Ulam Theorem [5] goes
against the usual way of doing things by first
verifying a norm condition then concluding that

the map is linear. In linear preserver problems, the
maps are between algebras and the maps are
assumed to be linear. A part from the maps being
linear, they also preserve some other property that
then leads to a conclusion classi- fying such maps.
An example of one such result is the Gleason-
Kahane-Zelazko Theorem [6]. When the mapping
in Kahane-Zelazko Theorem was strengthened to
be surjective from a uniform algebra to a uniform
algebra and preserves the spectra of algebra
elements, the results goes beyond concluding that
the mapping is multiplicative to preserving the
distance between algebra elements and the
structure of the algebra.

Banach-Stone Theorem [7] is another
example of such result that establishes an
isometric algebra isomor- phism between spaces
of continuous functions on compact spaces. The
Gleason-Kahane- Zelazko Theorem [8], apart
from having a spectral condition, it also required
the mapping T : U —— Y to be a linear operator.
There are several other results that require
preservation of all or part of the spectra of the
elements of the algebra or a subset of the elements
of the algebra but do not require the mapping T to
be linear. The first of such results was Kowalski
and Slodkowski [9] which demanded that the
spectrum of the difference between algebra
elements be preserved in order to have the
mapping preserve the algebraic structure as well
as the distance between algebra elements. The
spectral condition in the results implied that ITm —
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Tnl = Im —nl , Vm, n € G, that is, T preserves
distances be- tween the algebra elements. This
spectral condition brought the isometry conclusion
which was not a surprise. We also see that the
Mazur-Ulam Theorem [10] implies that T is an
R—linear mapping, so the additivity requirement
for an isomorphism is met. Unital operators are
mappings that preserve the unit element that is the
mapping T : V —— W between unital algebras has
the property T (1V ) = 1W. Spectral preserver
problems started taking a multiplicative direction
where the unit element was to be preserved. One
such result was from [11] which was extended by
Rao and Roy to surjective self-maps from any
uniform algebra to itself and for an arbitrary
compact Hausdorff set P .

The results in [2] were significantly
improved, one year later, by [3]. This was done by
allowing T to be an operator between any two
uniform algebras instead of requiring it to be a self
-map and by only requiring the preservation of a
subset of the spectra (the peripheral spectra) of
products of algebra elements. For algebra
elements m and n, if o(m) = o(n) then on(m) =
on(n) but not vice versa. Later [6] extended this
theorem to standard operator algebras. Luttman
and Tonev were joined with lambert to show that
instead of the preservation of the peripheral
spectra of products of algebra elements, T need
only preserve at least one element of the
peripheral spectra of products. The requirement
that T be unital was removed and added the
requirement that T preserve the peripheral spectra
of all algebra elements. However, this requirement
is not more than the previous results because the
theorem requires that T be unital, in which case
on(Tm) = on(TmT 1) = on(m - 1) = on(m), so a
map that satisfies the hypothesis of theorem does
in fact preserve the peripheral spectra of algebra
elements. The proofs of these theorems largely
depend on variations of the classical result by [2]
which was refined by [5]. A stronger version of
the lemma is found in [9]. In [8] the authors took
the additive direction by showing that a surjection
that preserves the peripheral spectra of sums of
algebra elements as well as the sup-norms of the
sums of the moduli of algebra elements will
preserve the distances between algebra elements
as well as the structure of the algebra.
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Research methodology

As we have seen, the set of linear multiplicative
functionals on a commutative Banach algebra
and the set of maximal ideals for that algebra are
in bijective correspondence, so we can make the
following definition.

Definition 2.1.

Let D be a commutative Banach algebra with
unit. The set MD of all nonzero linear
multiplicative functionals of D is called the
maximal ideal space of D. Though the space MD
does not possess a natural algebraic structure, we
can equip it with the weak—+topology it inherits
as a subset of D=, the collection of all bounded
linear functionals on D. When applied to the
maximal ideal space, we call this toplolgy the
Gelfand topology. We recall that under this
topology, a net of elements ¢, in Mp tends to ¢ €
Mp if and only if ¢,(m) — @@m), vm € D.
Thus, under the Gelfand topology, convergence
of functionals in Mp is point wise convergence.

A weak—" limit of linear multiplicative
functionals is itself a non-zero linear
multiplicative functional because (lim ¢,)(1) =
lim @y(1) = 1. We also note that the space MD

is compact in the weak—*topology by the
Banach-Alaoglu theorem.

Definition 2.2.

Let m be an element in a commutative Banach
algebra D. The Gelfand transform of m is the
function i on Mp defined by (p) = ¢(m),
Yoo € Mp. The Gelfand transform of m is clearly
continuous on Mp with respect to the Gelfand
topology since if ¢, — ¢, then @,(m) — @(m),
which implies that m(¢@,) — ().

Results and discussion

In this section, we present our results. We use the
fact that if X < C(P ) and Y < C(S) will be
uniform algebras on compact sets P and S
respectively and Since X and Y are sub algebras
of the unital C*-algebra A and also C(S) being
isomorphic to the unital C*-algebra A, the results
discussed in this Chapter concerning uniform
algebras can be extended to unital C* -algebra
and isomorphism changed to automorphism
since the transformation will be in the same
space. The following proposition gives sufficient
conditions under which surjective maps, in unital
C+-algebra, are automorphisms.
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Proposition 3.1.

If § : S— P ishomeomorphismand if T : X c A
—> C(S) = A isasurjection defined by Tm = m
o p¥F € X < A, then T s linear, multiplicative,
injective, and continuous then it is an isometric
algebra isomorphism.
Proof. Letm, n € A and A,u € C. Then
T(um + un = (Am + pn) ° ¢) = A(m ° ¢) +
H(n°¢) =ATm + 4Tn, so T is linear. Also,
T is multiplicative because
T(mn)=(mMn)ed=me°¢d)(ne°¢d)=TmTn.
Because y is a homeomorphism, it is
surjective, so T is injective. Finally, the
continuity of T follows from the linearity of
T and the inequality
ITml = supyes Im(d(y))| < If I.

If Tm = m < ¢, then we call T a $—composition
operator. If T : X — Y is a ¢—composition
operator, then T satisfies the equation I|[Tm| +
[Tn|l = ljm| + n]l
for every m, n € A since the fact that ¢ is a
homeomorphism implies that
IITm| + [Tnjl = Ilm < ¢| + |n ° ¢|I= Ijm| + |n]l.
The map T also satisfies the equations ITm +
Tnl = Im + nl and IXTm + pTnl = IAm +
unl, for every m, n € A and A,u € C since

IATm + puTnl = IAm e ¢ + pn o ¢l = Iam +

unl va,u € C

In particular, for A= = 1,proving that T
satisfies ITm + Tnl = Im + nl.
We also have the following preservation of
relationships among the peripheral
spectra:c(Tm) = c(M ° ¢) =c(Tm + Tn)
= or(m + n). This completes the proof.

Next, we show that a surjective
operator T : X € A — Y c A that satisfies
certain conditions naturally induces a
homeomorphism between the Choquet

boundary of X and the Choquet boundary
of Y.
Definition 4.2.

An operator T : X ¢ A — Y c A is norm-

additive in modulus if it satisfies

maxxep [(TM)(X)] + [(TN)(X)| = Maxxep [M(X)|
+ |n(x)|, VM, n € X.

Example 4.3.

Algebra automorphism modulus additive conditions for surjective maps on unital C*-algebras

TheoperatorT : X cA—Y c AforwhichTm =
im isanorm-additive in modulus because I Tm|+
|Tn|l= llim|+|in|l= [i] ljm| + |n|l= ljm| + n|I .
Where the operation T: X ¢ A —Y c A for
which Tm = —m is similarly norm-additive in
modulus. In fact, all operators T: X c A —Y
c Asuchthat Tm = am with aa € X € A and
la(X)| = 1, V € P are norm-additive in modulus
since I|Tm|+|Tn|l = ljam|+ |on|l= |o|l|jm| + n|I=
llm| + ]|l .

Example 4.4.

The operator T : X ¢ A —— Y c A defined by
Tm=Iml,vme X cA
iIs also norm-additive in modulus: || Tm]|+ |Tn|l
= l{lml] + |Inl|lI= ljm| + |n|l .
We note that this operator does not preserve
|m| unless m is a constant function. Clearly,
for any norm-additive in modulus operator,
we have T 0 = 0 since
0 = 10|+ |0]l=I|T O] + |T OJl= 2 I|T Ol implies
that |T O] = 0. Also, an operator that is
norm-additive in modulus is norm-
preserving since
ITml = I|[Tm| + |T O[I= Ijm|+ |0]l= Iml
Another example of norm-additive in
modulus operators is given by the next
proposition

Lemma 4.5.

Anoperator T : X ¢ A—— Y c A that satisfies
ITm+ oTnl=Im+onl,Vmne X cA
and o with |a| = 1 is norm-additive in modulus.

Proof. If T: X € A —— Y c A satisfies
ITm+ oTnl=Im+onl,Vm,ne X cA
and a = 1 is norm-additive in modulus,
then we can choose an a with |o| = 1 such
that
II'Tm| + |Tn|l = I|Tm| + |aTn|l= I Tm+
aTn|l=Ijm +on|I< ljm| + |an|l= ljm| + |n|l .
Similarly, Ijm| + |on|l < |Tm| + |Tn|l, so T is
norm-additive in modulus.

Definition 4.6.

An operator T : X ¢ A — Y < A is monotone
increasing in modulus if the inequality |m(x)| <
[n(X)| on 6X implies that |(Tm)(y)| < [(Tn)(y)| on
oY,Vvm,n € X.

Example 4.7.

The operators Tm = am for a € X with |a| =1
given in Example ... as norm-additive in modulus
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are also monote increasing in modulus since if |m(x)| <
[n(x)|, then

[(am)(x)| = [a(X)| [M(X)|= [M(X)[< [n(x)|=
o) NG [= [(am)(x))].

The next proposition provides a connection
between monotone increasing in modulus
operators and norm-additive in modulus
operators.

Proposition 4.8.

A norm-additive in modulus operator is monotone
increasing in modulus.

Proof. Let T: X € A—— Y < A be anorm-
additive in modulus operator. If |m(x)| <n(x))|
on 0X, then clearly Im| + |p|l < l|n| + |ap]|l for
any p € X c A. Because T is norm-additive
in modulus, we have that I|Tm| + |Tp|l = Ijm|
+ |p|l <l|n| + |p|l = ||Tn| + |Tp|l.

Assume that there is some bo € dY such that
|(Tm)(bo)| > |(Tn)(bo)|.

Because 0Y is dense in Y , we may assume
that b, € 3Y . choose a ® > 0 such that
|(TN)(bo)| < ® < [(Tm)(bo)|
and an open neighborhood N of by, in Y <
A such that |(Tn)(bo)|<® on N. Letr be a
real number greater than 1 such that ITml,
ITnl <r and let Tp € Pyo (Y ) be a peaking

function for Y with E(Tp) € N, so (Tp)(bo)
=1 and |(Tp)(b)|< 1 forany b € Y \N. By
replacing Tp with a sufficiently high
power of Tp, wehave

|(Tn)(b)| + |r(Tp)(b)] <r+ ®, Vb € 6Y \N.
This inequality also holds on N because
|(Tn)(b)| < ®, Vb € N and |(Tp)(b)| < 1 for all b
€ Y . Thus we have that |(Tn)(b)| + |r(Tp)(b)| <
r+w, Vb € oY .
[(Tm)(bo)| + r = [(Tm)(bo)| + r |(Tp)(bo)|
<ITm]| + r [Tp|I< l|Tn| + r |Tp|l
Therefore, |(Tm)(by)| < ®, which is a
contradiction. Hence,|(Tm)(b)| < |(Tn)(b)|, Vb
€ 0Y .
This holds for everyp=1, ..., n,so E(Tn)
cE(Th;). Hence the family E(TH) :h e
ex(X) has the finite intersection property, as
claimed. Because each E(Th) is a closed
subset of S, a compact set, the family E(Th) :
h € &(X) must have a non-empty
intersection. We observe that the set E(Tm)
= (Tm) '(c(Tm)) is a union of peak sets
because (Tm) '(u) is a peak set forany u €
o.(Tm). Thus, every b € E4 belongs to an
intersection F < E, of peak setsof Y .

Algebra automorphism modulus additive conditions for surjective maps on unital C*-algebras

Therefore, F meets 8Y and thus ExN3Y f= @.
We note that [2] considered sets similar to
Ex that involve peaking functions instead of
C—peaking functions but also require T to
preserve the peripheral spectra of all algebra
elements.

Lemma 4.9.

LetT : X cA—Y c Abeanorm-additivein

modulus, R+—h0m0gene0us, surjective operator.
IfaedXandb € E,NSY ,then T '(en(Y))
ga(X).

Proof. Let a € §X. If T is RY—homogeneous,
surjective, and norm-additive in modulus,
then T is monotone increasing in modulus
and norm-preserving, as we have seen, so
Ex=0. Letb € Ey, fix ap € g(Y ), and let h
€ T '(p). In order to prove that h € g,X, we
must show that |h(a)] = Ihl. Let N be an
open neighborhood of a and let k € Ihl -
Pa(X) be a C—peaking function such that

E(k) € N . Because b € Ex = mega(X)
E(Tk) < E(TK), we have that |(Tk)(b)| =
ITkl, which implies that Tk € &y (Y )

Because T preserves the norms,|p(b)| = Ipl =
Ihl = Ikl = ITkl. Thus, because T is norm-
additive in modulus,

Ihl + Ikl > I|h|+ k|l = l|p| + | Tk|I > |p(b)| +
[(TK)(b)| = Ipl+ ITkl = Ihl + IKkl.
Therefore , l|h| + k|l = Ihl+lkl, so there must
be an ay € 0X such that |h(ay )| = Ihl and
|k(an )| = Ikl. Hence , ay € E(K) < N and any
neighborhood N of a must contain a point ay
with |h(an )| = Ihl. Because h is continuous,
we must have |h(a)| = Ihl, which implies that

h € e.(X). Thus, T "'(epn(Y )) < ga(X).

Theorem 4.10.

IfT: X cA—Y cAisanorm-additivein

modulus, R+—h0m0geneous surjection, thenthe set
Ex isasingletonthatbelongsto Y forany generalized
peakpointa € 3Y .

Proof. Let b € Ex and suppose there isar €
Ex\b. Then there is a function p € g/(Y )
such that |p(r)| < Ipl. Forany h € T ~'(p) <
€a(X), we have E(p) = E(Th) o E4, which
implies that the function |p| = |Th| is a
constant on Ex with value Ipl. This is a
contradiction to |p(r)| < Ipl. Hence, the set Ex
contains only the point b. We see that T
induces an associated mapping t : X < A
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— 8Y < A such that a — 1 (a). From this
mapping T We will  obtain  the
homeomorphism that will allow us to
conclude that a map T satisfies certain of
the conditions is an algebra automorphism.

We see that g,a)(Y ) = &p(Y ) © T (ea(X)). If
h € &4(X), then we have that T (a) = Ex C
E(Th). Hence,|(Th)(t (a))| = IThl = Ihl =
|[h(a)|, for any h € g,(X). We note that if h € C
- Pa(X) and T preserves the peripheral spectrum
of h, that is o(Th) = o,(h), then |(Th)(t
(@))|= IThl= Ihl= |h(a)| implies that (Th)(t
(@)) = h(a) since the peripheral spectra are
singletons. We also note that, in [4], the
authors considered a mapping similar to T
that mapped each a € P to the singleton set
hePa(X) E(Th). In that paper, the operator

T: X cA—Y c A was assumed to be
peripherally-additive that is o(Tm + Tn) =
ox(m + n), vm, n € X and thus preserved the
peripheral spectrum for every m € X.

Corollary 4.11.
IfT: X cA—Y c A isanorm-additive in

modulus, R*~homogeneous surjection, then T
(2a(X)) = £ (Y ).
Proof. Let h € g,(X) for some a € 6X € A
and let p = Th. Then equation gives

Ip(t ()] = [(Th)(z(a))| =
[h(a)| = Ihl = Ipl
This implies that p € e, (Y ), s0 T (ea(X)) ©
&@(Y ) and, frrom Lemma 4.1.7, we have
that T (Sa(X)) DST(a)(Y )
The next proposition shows that when T is a
norm-additive in modulus,

R+1—homogeneous surjection, (4.10) holds
forevery m e X € A and a € 6X c A, not
merely for functions that take their maximum
modulus at a.

Proposition 4.12.
fT: XcA—Y c A is anorm-additive in

modulus , R+—homogene0us surjection, then the
associated mapping t that T induces is continuous
and the equation |[(Tm)(t (a))| = |m(a)|,holds
foreveryae dX c Aandallme X c A. If, in
addition, T is Dbijective, then 1T 1is a
homeomorphism from 6X < A onto Y c A, and
if y: 8Y € A —— 38X < A is the inverse mapping
of 1, then |(Tm)(b)| = Im(y(b))| for every b €
Y Cc A

Algebra automorphism modulus additive conditions for surjective maps on unital C*-algebras

Proof. We first show that |(Tm)(t (a))| = |m(a)|,
vVvaedX c A and Yme X c A. Leta € dX
c Ame X c A and r be a real number
greater than 1. If h, € r Iml - P.X is a
function as in the strong Additive Bishop’s
lemma, then IThel = Ihol = r Iml = r ITml.
$0, Thy € r ITml - £(Y ). Because T is norm-
additive in modulus, it implies that
r Iml + [m(a)| = infhe:a(X),hl=rlml I[h| +
[m]l

= infheea(X), Ihl=rIml
Il Tm(b)| + |Th]l

= infpeer (a)(X),Ihl=rlml
I Tm]| + [p]l

= Iml + |(Tm)(t (a))|

Consequently, [(Tm)(t (a))] = |m(a)|, as
claimed. To show the continuity of t , we
let a € 6X and k € (0, 1). Choose an open
neighborhood N of t (a) in dY and a
peaking function p € P)(Y') such that E(p)
c N and [p(b)|<k on 8Y \N. If h € T '(p),
then h € g4(X), and , according to , we have
lh(a)| = [(Th)(z (a))| = [p(t (a))| = 1 > k.
Therefore, the open set W = £ € 6X c A :
|h(§)| > k contains a. The first part of the
proof shows that for every £ € W, we
havelp(t () = [(Th)(t (&) = |h(@)| > k,
which implies that t (§) € N since |p(n)| < k for
n € 8Y \N . Consequently, T (W) € N, so 1 is
continuous. Now suppose that T is bijective.

Then T ' is R+—h0m0geneous, and because
the equation I|Tm| + |Tn|l = Ijm| + |n|l is
symmetric with respect to m and Tm, it must
also hold for the operator T * : Y — X.
Now T ! induces an associated map ¢ : 8Y
c A — 03X c A that is continuous and
satisfies |(T ~"p)(¢(m))| = [p(m)| , Vn € 8Y
Aand forany p € gm(Y ). Leta € 86X <
A andb = t(a) €38Y c A. Ifh € g(X),
then p=Th € gy (Y ), so

Ih(p(b)| = (T “(EN(@Dd) = |p(b)| =
|(Th)(b)| = [(Th)(t(a))| = [h(a)| = Ihl.

Hence, ¢(b) € E(h) for any h € g(X).

T
Because hegq(X) E(h) = X, we see that

o(t (a)) = d(b) = a, Va€e dX C A.
Similarly, t (¢(b)) = b, Vb € 8Y < A. Thus, t
and ¢ are both bijective and ¢ = 1 1 sotisa
homeomorphism. The rest is clear.
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Conclusions

In summary, we have determined sufficient
conditions for which a surjective map
between unital C+-algebras is an algebra
automorphism, we have shown that If A is a
unital C+-algebra which is commutative then
it is isomorphic to the space C(P ) of all
continuous functions on a compact set P and
uniform algebra is a sub algebra of the space
C(P) . Thereforeif Xc C(P)and Y c C(S)
are uniform algebras with Choquet boundary
oX and oY , itis shown thatif T : X — Y is
a surjection that preserves the norm of the
sums of the moduli of algebra elements,
then T induces a homoemorphism ¢
between the Choquet boundaries of X and Y
such that |Tm| = |m - ¢| on the Choquet
boundary of Y . If, in addition, T preserves
the norms of all linear combi- nations of
algebra elements and either preserves both i
and 1 or the peripheral spectra of C-peaking
function, then T is a composition operator
and thus an algebra automorphism.
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