2020;3(2):19-23. **ISSN: 2581-5954**

http://ijmcict.gjpublications.com

Research Article

Characterization of Properties of Aluthge Transforms in Banach Algebras

I. O. Okwany, N. B. Okelo, Judith J. E. J Ogal

School of Mathematics, Statistics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo-Kenya.

*Corresponding author's e-mail: bnyaare@yahoo.com

Abstract

Let \mathcal{H} be a complex separable Hilbert space with and let $\mathcal{B}(\mathcal{H})$ be the Banach algebra of all bounded linear operators on \mathcal{H} . In the present paper we characterize Aluthge transforms in Banach algebras. We considered classical and maximal numerical ranges of these transforms and finally we give their relationships.

Keywords: Hilbert space; Numerical ranges; Aluthge transforms; Banach algebra.

Introduction

It is known that the numerical range W(T) of T is the subset $W(T) = \{\langle Tx, x \rangle : x \in H, ||x|| = 1\}$ of the complex plane \mathbb{C} [1]. It is known that W(T) is always convex and the closure $\overline{W(T)}$ of W(T)contains $\sigma(T)$. On the other hand, essential numerical range of T is subset $W_e(T) = \{\lambda \in C : \text{there exists a unit vector } \}$ sequence $\{x_n\} \subset \mathcal{H}$ such that x_n converges weakly to 0, $\langle Tx_n, x_n \rangle \to \lambda$. It is known [2] that $W_e(T)$ is also always non-empty closed and convex and contains $\sigma_{e}(T)$. In [3], have $W_e(T) = \bigcap \{\overline{W(T+K)}: K \in \mathcal{K}(\mathcal{H})\}\$

In [4] the author introduced the concept of the maximal numerical range $W_0(T)$ of T to consider the norm of a derivation on $\mathcal{B}(\mathcal{H})$. The maximal numerical range of T is defined to be the subset $W_0(T) = \{\lambda \in \mathbb{C} : \text{there exists a unit} \}$ sequence $\{x_n\} \subset \mathcal{H}$ such $\langle Tx_n, x_n \rangle \to \lambda, ||\hat{T}x_n|| \to ||T||\}$. It was proved in [5] that $W_0(T)$ is a non-empty closed and convex subset of \mathbb{C} . We note that $W_0(T)$ does not have translation property by scalar, that is $W_0(T + \lambda) \neq W_0(T) + \lambda$. In particular, we know any $\lambda_1 \neq \lambda_2$ in \mathbb{C} , $W_0(T+\lambda_1) \cap W_0(T+\lambda_2) = \emptyset$. For a more detailed discussion of the maximal numerical range we refer to [6]. For a subset Δ of \mathbb{C} , we denote by Δ^{\wedge} the closed convex hull of Δ . If $T \in \mathcal{B}(\mathcal{H})$ with a polar decomposition T=U|T|,

then the Aluthge transform \widetilde{T} and *-Aluthge transform $\widetilde{T}^{(*)}$ are defined by $\widetilde{T} = |T|^{1/2}U|T|^{1/2}$ and $\widetilde{T}^{(*)} = |T^*|^{1/2}U|T^*|^{1/2}$ re spectively [7]. Note that both \widetilde{T} and $\widetilde{T}^{(*)}$ are independent of the choice of the partial isometry U in the polar decomposition of T. Recently, T, \widetilde{T} and $\widetilde{T}^{(*)}$ have been studied by many authors [8]. In this note, we consider the essential numerical range and the maximal numerical range of T, \widetilde{T} and $\widetilde{T}^{(*)}$. We prove that $W_e(\widetilde{T}) = W_e(\widetilde{T}^{(*)}) \subseteq W_e(T)$ and $W_0(\widetilde{T} + \lambda) = W_0(\widetilde{T}^{(*)} + \lambda)$ for all $\lambda \in \mathbb{C}$

Let $T \in \mathcal{B}(\mathcal{H})$ and T=U|T| be the polar decomposition of T, then [9] we have N(T)=N(/T/)=N(U). In terms of the orthogonal

decomposition $\mathcal{H} = N(T) \bigoplus N(T)^{\perp}$ of \mathcal{H} , T has the following matrix form $T = \begin{pmatrix} 0 & A \\ 0 & B \end{pmatrix}$ for some

the following matrix form $(^{\circ} B)$ for some bounded linear operators A from $N(T)^{\perp}$ to N(T) and B on $N(T)^{\perp}$. Now it is known [10] that

$$U = \begin{pmatrix} 0 & U_1 \\ 0 & U_2 \end{pmatrix} \quad \text{and} \quad T^*T = \begin{pmatrix} 0 & 0 \\ 0 & A^*A + B^*B \end{pmatrix}$$

for some operators U_1 and U_2 . By a simple calculus, \widetilde{T} has the following matrix

$$\widetilde{T} = \begin{pmatrix} 0 & 0 \\ 0 & X \end{pmatrix}$$
, where $X = (A^*A + B^*B)^{1/4}U_2(A^*A + B^*B)^{1/4}$ on $N(T)^{\perp}$.

that $\widetilde{T}^{(*)}=U\widetilde{T}U^*$ and $\widetilde{T}=U^*\widetilde{T}^{(*)}U$. known Note unitary operator a from $N(T)^{\perp}$ to $N(T^*)^{\perp}$, then there is a unitary operator U_0 from $N(T)^{\perp}$ onto $N(T^*)^{\perp}$ such that $U = \begin{pmatrix} 0 & 0 \\ 0 & U_0 \end{pmatrix}$ from $N(T) \bigoplus N(T)^{\perp}$ to $N(T^*) \bigoplus$ $N(T^*)^{\perp}$ follows space respect the decomposition $\mathcal{H} = N(T^*) \bigoplus N(T^*)^{\perp}$, where $Y = U_0 X U_0^*$.

Research methodology

Proposition 2.1

Let $T \in \mathcal{B}(\mathcal{H})$. Then all $K \in \mathcal{K}(\mathcal{H})$ $\widetilde{T + K} - \widetilde{T} \in \mathcal{K}(\mathcal{H})$.

Proof

Since $(T + K)^*(T + K) = T^*T + K_1$ for some $K_1 \in \mathcal{K}(\mathcal{H})$, we have $|T + K|^2 = |T|^2 + K_1$. follows that $(\pi(|T + K|))^2 = (\pi(|T|))^2$ and $\pi(|T+K|) = \pi(|T|)$ implies that $|T + K| - |T| \in \mathcal{K}(\mathcal{H})$ and $\operatorname{again} |T + K|^{1/2} - |T|^{1/2} \in \mathcal{K}(\mathcal{H})$

Let T = U/T and $T + K = V|T + K|_{be}$ the decomposition of T and T+K respectively. that $K = V|T + K| - U|T| \in \mathcal{K}(\mathcal{H})$ then $V(|T+K|-|T|)+(V-U)|T| \in \mathcal{K}(\mathcal{H})$, and therefore $(V - U)|T| \in \mathcal{K}(\mathcal{H})$ since $V(|T+K|-|T|) \in \mathcal{K}(\mathcal{H})$. If |T| is invertible, then $(V-U)|T|^{1/2} \in \mathcal{K}(\mathcal{H})$. Otherwise. put $f(t) = t^{1/2}$, $t \in [0, |T|]$. We may choose a sequence polynomials $P_n(t)$ with $P_n(0)=0$ such that $\lim_{n\to\infty} ||P_n - f|| = 0$ in C[0,|T|] by Stone-Theorem. clear $(V - U)P_n(|T|) \in \mathcal{K}(\mathcal{H})$ for all n. It follows that $(V - U)|T|^{1/2} \in \mathcal{K}(\mathcal{H})$ and therefore $|T|^{1/2}(V-U)|T|^{1/2} \in \mathcal{K}(\mathcal{H})$

Above all, we have
$$\sigma_e(T) = \sigma_e(T^{(*)})$$
.
$$T + K - \widetilde{T} = |T + K|^{1/2} V |T + K|^{1/2} - |T|^{1/2} U |T|^{1/2}$$

$$= |T + K|^{1/2} V (|T + K|^{1/2} - |T|^{1/2}) + (|T + K|^{1/2} (V - |T|^{1/2}) V + (|T + K|^{1/2} (V - |T|^{$$

 $\inf_{\text{since } |T+K|^{1/2}-|T|^{1/2})} U|T|^{1/2} \in \mathcal{K}(\mathcal{H})$

Proposition 2.2

Let $T \in \mathcal{B}(\mathcal{H})$. Then $W_e(\widetilde{T}) \subseteq W_e(T)$.

Proof

It known that $W_e(T) = \bigcap \{\overline{W(T+K)} : K \in \mathcal{K}(\mathcal{H})\}$ that is, $W_e(T) = W_e(T + K)$ for all $K \in \mathcal{K}(\mathcal{H})$. By [7], we $W_{\varepsilon}(\widetilde{T}) = W_{\varepsilon}(\widetilde{T+K}) \subseteq W(\widetilde{T+K}) \subseteq \overline{W(T+K)}.$ $W_e(\widetilde{T}) \subseteq \bigcap \{\overline{W(T+K)}: K \in \mathcal{K}(\mathcal{H})\} = W_e(T).$

Lemma 2.3

Let $T \in \mathcal{B}(\mathcal{H})$. Then $\sigma_e(\widetilde{T}) = \sigma_e(\widetilde{T}^{(*)})$.

Proof

Recall that $\sigma_e(T) = \sigma_{le}(T) \bigcup \sigma_{re}(T)$. We first prove that $\sigma_{le}(\widetilde{T}) \setminus \{0\} = \sigma_{le}(\widetilde{T}^{(*)}) \setminus \{0\}$

Suppose $\lambda \in \sigma_{le}(\widetilde{T}) \setminus \{0\}$. Then there exists a unit vector sequence $\{x_n\}$ in \mathcal{H} such that $\{x_n\}$ converges weakly zero and $\lim_{n\to\infty} \|(\widetilde{T} - \lambda)x_n\| = 0$. is, $\lim_{n\to\infty} \|(U^*\widetilde{T}^{(*)}U - \lambda)x_n\| = 0$. In fact, we choose $\{x_n\}$ in $N(T)^{\perp}$ such that $||Ux_n|| = 1$ for all integer n. It follows that $\lim_{n\to\infty} \|(\widetilde{T}^{(*)}-\lambda)Ux_n\| = \lim_{n\to\infty} \|(UU^*\widetilde{T}^{(*)}-\lambda)Ux_n\| \le \lim_{n\to\infty} \|(\widetilde{T}-\lambda)x_n\| = 0.$

Note that $U x_n$ converges weakly to zero, then $\lambda \in \sigma_{le}(\widetilde{T}^{(*)})$. On the other hand, we can obtain $\sigma_{le}((\widetilde{T})^{(*)}) \setminus \{0\} \subseteq \sigma_{le}(\widetilde{T}) \setminus \{0\}$ by a similar method. Then $\sigma_{le}(\widetilde{T}) \setminus \{0\} = \sigma_{le}(\widetilde{T}^{(*)}) \setminus \{0\}$. It also follows that $\sigma_{re}(\widetilde{T}) \setminus \{0\} = \sigma_{re}(\widetilde{T}^{(*)}) \setminus \{0\}$ by the fact that $\sigma_{re}(A) = \sigma_{le}(A^*)$ for any $A \in \mathcal{B}(\mathcal{H})$. Then $\sigma_e(\widetilde{T}) \setminus \{0\} = \sigma_e(\widetilde{T}^{(*)}) \setminus \{0\}$. Next we show that $0 \in \sigma_e(\widetilde{T})$ if and only if $0 \in \sigma_e(\widetilde{T}^{(*)})$. This is equivalent to show that \tilde{T} is Fredholm if and only if $\widetilde{T}^{(*)}$ is. Note that \widetilde{T} (resp. $\widetilde{T}^{(*)}$) is if U and $|T|^{1/2}$ (resp. $|T^*|^{1/2}$) are Fredholm. It follows that \widetilde{T} is Fredholm if and only if $\widetilde{T}^{(*)}$ is by the facts that $\widetilde{T} = U^* \widetilde{T}^{(*)} U$ and $\widetilde{T}^{(*)} = U \widetilde{T} U^*$. Above all, we have $\sigma_e(\widetilde{T}) = \sigma_e(\widetilde{T}^{(*)})$.

Theorem 2.4

Proof

We that $\widetilde{T} = \begin{pmatrix} 0 & 0 \\ 0 & X \end{pmatrix}$ and $\widetilde{T}^{(*)} = \begin{pmatrix} 0 & 0 \\ 0 & Y \end{pmatrix}$, where X and Y are unitarily equivalent. Then we easily have $W_e(X) = W_e(Y)$

 $W_e(X) \subseteq W_e(\widetilde{T}) \subseteq (W_e(X) \cup \{0\})^{\wedge} \text{ and } W_e(Y) \subseteq W_e(\widetilde{T}^{(*)})$

To complete the proof, it is sufficient to prove that $0 \in W_e(\widetilde{T})$ if and only if $0 \in W_e(\widetilde{T}^{(*)})$. If $0 \notin W_e(\widetilde{T}^{(*)})$, Suppose $0 \in W_{\epsilon}(\widetilde{T})$ then $W_e(\widetilde{T}^{(*)}) = W_e(Y)$ and $0 \notin \sigma_e(\widetilde{T}^{(*)})$. Proposition 2.1, we also have $0 \notin \sigma_{\epsilon}(\widetilde{T})$. It follows that N(T) is finite-dimensional and X is Fredholm. $W_e(\widetilde{T}) = W_e(X) = W_e(Y) = W_e(\widetilde{T}^{(*)})$. This is a contradiction. Thus, $0 \in W_e(\widetilde{T}^{(*)})$. Conversely, if $0 \in W_e(\widetilde{T}^{(*)})$, we similarly have $0 \in W_e(\widetilde{T})$

Results and discussion

In this section, we give the main results of our study. We begin with the following Lemma.

Lemma 3.1

Let
$$T \in \mathcal{B}(\mathcal{H})$$
. Then
 $W_0(T^*) = (W_0(T))^* = \{\lambda : \overline{\lambda} \in W_0(T)\}.$

Proof

that $||T|| = ||T^*|| = 1$. We assume Suppose $\lambda \in W_0(T)$. Then there exists a unit sequence $\{x_n\}$ in \mathcal{H} such that $\lim_{n\to\infty} ||Tx_n|| = 1$ and $\lim_{n\to\infty} \langle Tx_n, x_n \rangle = \lambda$. Now have $\lim_{n\to\infty} |\langle x_n, x_n \rangle - \langle Tx_n, Tx_n \rangle| = \lim_{n\to\infty} |\langle (1-T^*T)x_n, x_n \rangle| = 0$ invertible since X and Y are unitarily implies that $\lim_{n\to\infty} \|(1-T^*T)^{1/2}x_n\|^2 = 0$ Then $\lim_{n\to\infty} \|(1-T^*T)x_n\| = 0$ and $\lim_{n\to\infty} \|T^*Tx_n\| = 1$ In particular, $\lim_{n\to\infty} ||Tx_n|| = 1$. $\lim_{n\to\infty} |\langle T^*Tx_n, Tx_n \rangle - \langle x_n, Tx_n \rangle| = \lim_{n\to\infty} |\langle (T^*T - 1)x_n, Tx_n \rangle|$ proof is similar to Case 3. $\leq \lim_{n \to \infty} \|(T^*T - 1)x_n\| \|Tx_n\| = 0.$

We now $\lim_{n\to\infty} \langle T^*Tx_n, Tx_n \rangle = \lim_{n\to\infty} \langle x_n, Tx_n \rangle = \overline{\lambda}$ Here put $y_n = Tx_n/||Tx_n||$. Then $\{y_n\}$ is a unit vector sequence, $\lim_{n\to\infty} ||T^*y_n|| = 1$ and $\lim_{n\to\infty} \langle T^* y_n, y_n \rangle = \overline{\lambda}$ which implies that $\overline{\lambda} \in W_0(T^*)$. Then $(W_0(T))^* \subseteq W_0(T^*)$. By symmetry, we have $W_0(T^*) = (W_0(T))^*$.

Lemma 3.2

Let $T \in \mathcal{B}(\mathcal{H})$. Then $\|\widetilde{T} - \lambda\| = \|\widetilde{T}^{(*)} - \lambda\|$ for all $\lambda \in \mathbb{C}$.

Proof

Let $\widetilde{T} = \begin{pmatrix} 0 & 0 \\ 0 & X \end{pmatrix}$ and $\widetilde{T}^{(*)} = \begin{pmatrix} 0 & 0 \\ 0 & Y \end{pmatrix}$ with respect to decomposition $\mathcal{H} = N(T) \bigoplus N(T)^{\perp}$ and $H = N(T^*) \bigoplus N(T^*)^{\perp}$ respectively, where $Y = U_0 X U_0^*$, and U_0 is unitary.

Let
$$\lambda \in \mathbb{C}$$
, then we have $\widetilde{T} - \lambda = \begin{pmatrix} -\lambda & 0 \\ 0 & X - \lambda \end{pmatrix}$, $\widetilde{T}^{(*)} - \lambda = \begin{pmatrix} -\lambda & 0 \\ 0 & Y - \lambda \end{pmatrix}$, and $Y - \lambda = U_0(X - \lambda)U_0^*$.

Then $\|X - \lambda\| = \|Y - \lambda\|$.

Case 1 $N(T)\neq\{0\}$ and $N(T^*) \neq \{0\}$. Then $\|\widetilde{T} - \lambda\| = \max\{|\lambda|, \|X - \lambda\|\} = \max\{\|\lambda\|, \|Y - \lambda\|\} = \|\widetilde{T}^{(*)} - \lambda\|.$ Case 2 $N(T)=\{0\}$ and $N(T^*)=\{0\}$. In this case, $\widetilde{T} - \lambda = X - \lambda$, $\widetilde{T}^{(*)} - \lambda = Y - \lambda$. Clearly $\|\widetilde{T} - \lambda\| = \|X - \lambda\| = \|Y - \lambda\| = \|\widetilde{T}^{(*)} - \lambda\|.$

Case 3 $N(T)=\{0\}$ and $N(T^*) \neq \{0\}$. Then $\widetilde{T} - \lambda = X - \lambda$. It. follows that $\|\widetilde{T} - \lambda\| = \|X - \lambda\|$. Next show that $\|\widetilde{T}^{(*)} - \lambda\| = \|Y - \lambda\|$ Otherwise. $\|f\|Y - \lambda\| < |\lambda|, \quad \text{then } -\lambda \in \rho(Y - \lambda).$ implies that Y is invertible. It follows that X is equivalent. Thus $\widetilde{T} = X$ is invertible and so are T and T*. However, $N(T^*) \neq 0$. This is a contradiction.

Hence $||Y - \lambda|| \ge |\lambda|$ and $||\widetilde{T}^{(*)} - \lambda|| = ||Y - \lambda||$. Therefore $\|\widetilde{T} - \lambda\| = \|\widetilde{T}^{(*)} - \lambda\|$

Case 4 $N(T) \neq \{0\}$ and $N(T^*) = \{0\}$. The

Remark 3.3

Let U be a non-unitary isometry on \mathcal{H} . It is known that $U = U_0 \oplus U_1$ from the von Neumann-Wold Decomposition Theorem, where U_0 is unitary and U_1 is a unilateral shift.

Theorem 3.4

Let $T \in \mathcal{B}(\mathcal{H})$. Then $W_0(\widetilde{T} - \lambda) = W_0(\widetilde{T}^{(*)} - \lambda)$ for r all $\lambda \in \mathbb{C}$.

Proof

Let
$$\lambda \in \mathbb{C}$$
, we have $\widetilde{T} - \lambda = \begin{pmatrix} -\lambda & 0 \\ 0 & X - \lambda \end{pmatrix}$ and $\widetilde{T}^{(*)} - \lambda = \begin{pmatrix} -\lambda & 0 \\ 0 & Y - \lambda \end{pmatrix}$ with respect to the space decomposition $\mathcal{H} = N(T) \bigoplus N(T)^{\perp}$ and

 $\mathcal{H} = N(T^*) \bigoplus N(T^*)^{\perp}$ respectively, where *X*- λ and *Y*- λ are unitarily equivalent.

Case 1 $N(T)=\{0\}$ and $N(T^*)=\{0\}$. In this case $\widetilde{T}-\lambda=X-\lambda$, $\widetilde{T}^{(*)}-\lambda=Y-\lambda$.

The result follows.

Case 2 $N(T) \neq \{0\}$ and $N(T^*) \neq \{0\}$.

 $If ||Y - \lambda|| = ||X - \lambda|| = |\lambda|,$

then

 $W_0(\widetilde{T} - \lambda) = (\{\lambda\} \bigcup W_0(X - \lambda))^{\wedge} = (\{\lambda\} \bigcup W_0(Y - \lambda))^{\wedge} = W_0(\widetilde{T}^{(*)} - \lambda)$ by Lemma 3.1.

If $\|X - \lambda\| = \|Y - \lambda\| > |\lambda|$, then $W_0(\widetilde{T} - \lambda) = W_0(X - \lambda) = W_0(Y - \lambda) = W_0(\widetilde{T}^{(*)} - \lambda)$ by Lemma 3.2.

If $\|X - \lambda\| = \|Y - \lambda\| < |\lambda|$, then $W_0(\widetilde{T} - \lambda) = \{-\lambda\} = W_0(\widetilde{T}^{(*)} - \lambda)$ by Lemma 3.1 again.

Case 3 $N(T)=\{0\}$ and $N(T^*)\neq\{0\}$. Then $\widetilde{T}-\lambda=X-\lambda$ and $W_0(\widetilde{T}-\lambda)=W_0(X-\lambda)$. We next prove that $\|Y-\lambda\|>|\lambda|$. Note that $\widetilde{\lambda T}=\lambda\widetilde{T}$. Without loss of generality, we may assume that $\lambda=1$.

We have

$$\|\widetilde{T}^{(*)} - 1\| = \|\widetilde{T} - 1\| = \|X - 1\| = \|Y - 1\| \ge 1$$
 by Lemma 3.1 and our assumption.

In fact, if $\|\widetilde{T}^{(*)} - 1\| = \|\widetilde{T} - 1\| < 1$, then we have that \widetilde{T} is invertible. Then so is T. This contradicts with the assumption of this case. If $\|Y - 1\| = 1$, then $\|\widetilde{T} - 1\| = 1$. Note that U is non-unitary isometry and $\|T\|^{1/2}$ is injective with dense range since N(T) = 0 and $N(T^*) \neq 0$. Then for any unit vector $X \in \mathcal{H}$, we have $|\langle \widetilde{T} x, x \rangle - 1| \leq 1$, which implies

that
$$\left| \||T|^{1/2}x\|^2 \left\langle U \frac{|T|^{1/2}x}{\||T|^{1/2}x\|}, \frac{|T|^{1/2}x}{\||T|^{1/2}x\|} \right\rangle - 1 \right| \le 1.$$
It is clear that $\left\langle U \frac{|T|^{1/2}x}{\||T|^{1/2}x\|}, \frac{|T|^{1/2}x}{\||T|^{1/2}x\|} \right\rangle \in W(U).$

Note that $|T|^{1/2}$ has dense range. Then we can choose a unit vector $x_0 \in H$ such $\left(U \frac{|T|^{1/2} x_0}{\||T|^{1/2} x_0\|}, \frac{|T|^{1/2} x_0}{\||T|^{1/2} x_0\|}\right) \in (-1, 0)$ by

that $\left(\frac{C}{\||T|^{1/2}x_0\|}, \frac{C}{\||T|^{1/2}x_0\|}\right) \in (-1, 0)$ by Lemma 3.2. It follows that

$$\left| \||T|^{1/2} x_0 \|^2 \left\langle U \frac{|T|^{1/2} x_0}{\||T|^{1/2} x_0\|}, \frac{|T|^{1/2} x_0}{\||T|^{1/2} x_0\|} \right\rangle - 1 \right| > 1.$$

This is a contradiction. Hence |Y-1| > 1 and $W_0(\widetilde{T}^{(*)} - 1) = W_0(Y-1)$ by Lemma 3.2.

We then generally have

 $W_0(\widetilde{T}^{(*)} - \lambda) = W_0(Y - \lambda) = W_0(X - \lambda) = W_0(\widetilde{T} - \lambda)$ by Lemma 2.

Case 4 $N(T) \neq \{0\}$ and $N(T^*) = \{0\}$. The proof is similar to Case 3.

We recall that an inner derivation determined by $A \in \mathcal{B}(\mathcal{H})$ is defined by $\delta_A(X) = AX - XA$ for all $X \in \mathcal{B}(\mathcal{H})$. Stampfli in 8 gave the norm $\|\delta_A\|$ of δ_A by using of maximal numerical range, that is, $\|\delta_A\| = \inf\{\|T - \lambda\| : \lambda \in \mathbb{C}\}$. By Theorem 3, we have

Theorem 3.5

Let $T \in \mathcal{B}(\mathcal{H})$.

$$W_0(T) \subset \overline{W(\widetilde{T})}.$$

$$If ||T|| = ||\widetilde{T}||_{then} W_0(\widetilde{T}) \subset W_0(T).$$

Proof

Without loss of generality, we may assume that ||T|| = 1.

Let $\lambda \in W_0(T)$, then there exists a unit vector sequence of $\{x_n\}$ in \mathcal{H} such that $\lim_{n \to \infty} \|Tx_n\| = 1$ and $\lim_{n \to \infty} \langle Tx_n, x_n \rangle = \lambda$, which implies that $\lim_{n \to \infty} \||T|^{1/2}x_n\| = 1$ and

that
$$\lim_{n\to\infty} ||T|^{1/2} x_n|| = 1$$
 and $\lim_{n\to\infty} ||(1-|T|)x_n|| = 0$.

$$\lim_{n \to \infty} |\langle Tx_n, x_n \rangle - \langle \widetilde{T} | T |^{1/2} x_n, |T|^{1/2} x_n \rangle|$$

$$= \lim_{n \to \infty} |\langle Tx_n, x_n \rangle - \langle U | T | x_n, |T| x_n \rangle|$$

$$= \lim_{n \to \infty} |\langle Tx_n, (1 - |T|) x_n \rangle|$$

Hence $\leq \lim_{n \to \infty} ||Tx_n|| ||(1-|T|)x_n|| = 0$. It follows that $\lim_{n \to \infty} \langle \widetilde{T}|T|^{1/2}x_n, |T|^{1/2}x_n \rangle = \lambda$. Here put $y_n = |T|^{1/2}x_n/(||T|^{1/2}x_n||)$. Then $\{y_n\}$ is a unit vector sequence and $\lim_{n \to \infty} \langle \widetilde{T}y_n, y_n \rangle = \lambda$, and therefore $\lambda \in W(\widetilde{T})$.

We have $\|T\| = \|\widetilde{T}\| = 1$. Suppose $\lambda \in W_0(\widetilde{T})$. Then there exists a unit vector sequence of $\{x_n\}$ in \mathcal{H} such that $\lim_{n \to \infty} \|\widetilde{T}x_n\| = 1$ and $\lim_{n \to \infty} \langle \widetilde{T}x_n, x_n \rangle = \lambda$. It easily follows that $\lim_{n \to \infty} \||T|^{1/2}x_n\| = \||T|^{1/2}\| = 1$ and then $\lim_{n \to \infty} \|(1 - |T|)x_n\| = 0$. We easily have $\lim_{n \to \infty} \|(1 - |T|^3)x_n\| = 0$ also.

Thus
$$\lim_{n\to\infty} ||T|T|^{1/2}x_n|| = \lim_{n\to\infty} (|T|^3x_n, x_n) = 1 = ||T||$$

On the other hand,

$$\begin{split} &\lim_{n\to\infty} |\langle \widetilde{T}x_n, \ x_n \rangle - \langle T|T|^{1/2}x_n, \ |T|^{1/2}x_n \rangle| \\ &= \lim_{n\to\infty} |\langle U|T|^{1/2}x_n, \ |T|^{1/2}x_n \ \rangle - \langle \ T|T|^{1/2}x_n, \ |T|^{1/2}x_n \ \rangle| \\ &= \lim_{n\to\infty} |\langle (U|T|^{1/2} - U|T||T|^{1/2}) \ x_n, \ |T|^{1/2}x_n \rangle| \\ &= \lim_{n\to\infty} |\langle (U|T|^{1/2}) \ (1 - |T|) \ x_n, \ |T|^{1/2}x_n \rangle| \\ &\leq \lim_{n\to\infty} |U|T|^{1/2} || \ ||(1 - |T|)x_n|| \ |||T|^{1/2}x_n|| = 0. \end{split}$$

Here put $y_n = |T|^{1/2} x_n / (||T|^{1/2} x_n||)$.

Then $\{y_n\}$ is a unit vector sequence and $\lim_{n\to\infty} ||Ty_n|| = ||T|| = 1$ and $\lim_{n\to\infty} \langle Ty_n, y_n \rangle = \lambda$. Thus $\lambda \in W_0(T)$.

Conclusions

If we let \mathcal{H} to be a complex separable Hilbert space and we let $\mathcal{B}(\mathcal{H})$ be the Banach algebra of all bounded linear operators on \mathcal{H} , we have characterized Aluthge transforms in Banach algebras. We have considered the classical and maximal numerical ranges of these transforms and finally we have given their relationships.

Conflicts of interest

Authors declare no conflict of interest.

References

- [1] Halmos PR. A Hilbert Space Problem Book, Springer Verlag New York; 1970.
- [2] Lumer G. Semi-inner product spaces. Trans Amer Math Soc 2016;100(5):29-43.
- [3] McIntosh A. Heinz inequalities and perturbation of spectral families, Macquarie Mathematics Reports 2006;291(2):79-86.

- [4] Jung IB, Ko E, Pearcy C. Aluthge transforms of operators. Integral Equations and Operator Theory 2000; 37(3):437-48.
- [5] Taylor J. A joint spectrum for several commuting operators. J Funct Anal 2019;6(2):172-91.
- [6] Okelo NB. On Characterization of Various Finite Subgroups of Abelian Groups. International Journal of Modern Computation, Information and Communication Technology 2018;1(5):93-8.
- [7] Okelo NB. On Normal Intersection Conjugacy Functions in Finite Groups. International Journal of Modern Computation, Information and Communication Technology 2018;1(6):111-5.
- [8] Okwany I, Odongo D, and Okelo NB. Characterizations of Finite Semigroups of Multiple Operators. Int J Mod Comput Info and Commun Technol Int J Mod Comput Info and Commun Technol 2018; 1(6):116-20.
- [9] Ramesh R, Mariappan R. Generalized open sets in Hereditary Generalized Topological Spaces J Math Comput Sci 2015;5(2):149-59.
- [10] Wanjara AO. On the Baire's Category Theorem as an Important Tool in General Topology and Functional Analysis. International Journal of Modern Computation, Information and Communication Technology 2019;2(4):27-31.
