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Abstract

Pests are very important in crop production especially aphids are important pests which cannot be
ignored in agriculture. The damage they cause to these crops as well as loss of yields can be extensive if
not contained. However, to contain these pests, it is important to understand its dynamics in relation to
its interaction with its natural enemies like the ladybird. In mathematics, the best tool that can be used to
understand this prey-predator dynamics is the models which have different variables and parameters
that represent the various aspects of the dynamics of the prey-predator system that we are interested in.
In this study, we have therefore gone an extra mile to construct sets of mathematical models, by

adjusting the function representing the prey-predator interaction.

Keywords: Prey-predator; Dynamics model; Ladybird; Lyapunov Function.

Introduction

In [1] the authors discussed forecasting cereal
aphid outbreaks. They modelled the effects of
coccinellids, parasitoids and disease. In their
model, they used steps of model initialization,
data input, hourly temperatures, immigration,
development and survival, reproduction and
morph determination, predators, output, crop
development model and input variable. The
advection term represented the predator density
movement according to a basic prey taxis
assumption: acceleration of predators s
proportional to the prey gradient. The prey
population reproduced logistically, and the local
population interactions followed the Holling
Type Il function. Their spatially explicit model
subdivided the predation process into random
movement represented by diffusion, directed
movement was described by prey taxis, local
prey encounters, and consumption modelled by
trophic function. The model enabled studying the
effects of large-scale predator spatial activity on
population dynamics.

In [2] the authors came up with a logistic
model with variable carrying capacity and
growth rate affected by cumulative density to
study the population dynamics of aphids. In [3],

a flux-based model to describe an aphid-
parasitoidal system in a closed structured
environment has been presented. They applied
this approach to the Aphis gossypii and to one of
its parasitoids, Lysiphlebu testaceipes in a melon
green house. They developed a model showing
host-parasitoidal  interactions. The  model
represented the level of plant infestation as a
continuous variable corresponding to the number
of plants bearing a given density of pests at a
given time. They used partial differential
equations to describe the variation of this
variable, which was coupled to an ordinary
differential equation and a delay-differential
equation that described the parasitized host
population and the parasitoid population,
respectively.

A study in [4] presented a management
alternative for the control of pest species through
intraguild  predation  for the  spatially
homogeneous system. They extended the model
to include movement of predator and prey in the
spatial context. They considered a spatially
homogeneous system and found the conditions
for predator and prey to exclude each other, to
coexist and for alternative stable states. Other
studies in [5-10] presented a general framework
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for age-structured predator-prey systems where
individuals were divided into two classes,
juveniles and adults, and several possible
interactions  considered. They used the
Rosenzweig-MacArthur  prey-predator model
which they extended to include delay. They then
reduced the initial system of partial differential
equations to a system of (neutral) delay
differential equations with one or two delays. In
this project, we have extended the mathematical
background given by Rosenzweig-MacArthur
prey-predator model using the work done by
[11]. We first formulate two sets of Rosenzweig-
MacArthur  prey-predator model with one
predator and the prey, and then solve them
analytically and numerically. The second set of
the model seeks to modify and thus give a more
accurate analysis of data compared to the first set
of the model.

Terminologies
Aphid density: number of aphid per plant.

Carrying capacity: the population size of the
species that the environment can sustain
indefinitely, given the food, habitat, water and
other  necessities are available in the
environment.

Cumulative density: total number of aphids.

Economic injury level: the smallest number of
insects (amount of injury) that will yield losses
equal to the insect management cost .

Economic threshold: the pest density at which
management action should be taken to prevent
an increasing pest population from reaching the
economic injury level.

Fecundity: the actual reproductive rate of an
organism or population, measured by the number
of gametes (eggs), seed set or asexual propagules

Integrated pest management: is an effective and
environmentally sensitive approach to pest
management that relies on a combination of
common-sense practices.

Mortality: death rate.
Oviposition: laying eggs.

Voracity: eagerness to consume great quantities
of food.
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The varying nature of the soluble nitrogen in the
host plants, which is a good indicator of host
quality, explains the assumption of the varying
carrying capacity. On the other hand, in the
cumulative density model incorporated above,
the assumption is that the cumulative density is
the regulatory term that slows down the
instantaneous rate of increase. This is pegged on
the assumption that it is the sum of the number
of individuals multiplied by their life span,
which determines the slowing down of the
instantaneous rate of increase. Thus it could
influence food quality and hence slow down
population rate of increase. The advantage of the
Kindlmann model [6] is that it gives the most
flexible model. However, its limitation is that
there is the problem of how to measure the time
varying carrying capacity. The focus of this
project is predation as a means of pest control.
We particularly look at Coccinellidae (ladybird
beetles) as our predator. Many studies have been
conducted on ladybirds as aphid predators
because they are visible and also have economic
importance to a variety of crops. The larvae and
adults of coccinellids feed on the same type of
prey species and occur in identical habitats [3].
The lifetime fecundity of Coccinellid varies
greatly between species and may range from
slightly more than 100 to more than 1500 eggs
per female. Developmental times varies greatly
between species and is influenced by
temperature, the amount of food consumed and
prey species [5].

Results and discussions
Consider the system

dN N aNP
—=Ne-B)(1- o) - ———

dt K D+ ahN 1(a)
dP _ o GNP

a D + ahN

and

dN N aNP

= =Ne-b)(1-2) - ——

dt K D+ ahiN+P 1(b)
dP _ o GNP

ar D+ahN +P

Without loss of generality we simplify the
models by taking ah = 1. Hence the above
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equations 1(a) and (b) respectively in
respectively can be written as indicated below.

AN N aNP
M ir-n(1- ) -
dt K D+N )
dP 5 EaNF
dar D+N
dN N aNP
M- )
dt K D4+N+P
(3)
dP r e aNP
da DINLP

Where, N>0 and P>0, respectively. This implies
that allthe parameters in the model are positive.
We then perform non-dimensionalization to
reduce the number of parameters in the model in
equation (2) and (3) by reducing £, N and F into
non-dimensional form using,

t — —
t=-,N=NK,P =PeK.

T
Then, further by setting the
parametersz ==, g=% K == then

dropping the sign, we find that the equations (2)
and (3) take the form in equations (4) and (5)
respective

iN B aNP
;_N[l_ ;)(1_ N) - D+N 4()

L= pp- 22 4(b)

dt B D+N

dN
dt

Z=pp- 5(b)

dt D+N+P

N (0)>0 and P(0)>0, respectively.

The parameters in our analysis of the
prey-predator interaction, which we have gotten
from a previous study, give us fixed values for
these parameters. However, the time span and
the densities of the prey/ predator vary. The
variation of initial prey’s density, N, or the initial
predator’s density, P, have an effect on the both
the prey and predators population. We explore
four possible variations illustrated as (i), (i), (iii)
and (iv), below:

N(1-2)a- M- =2 5

D+N+P

N-small, P-large

When the number of predators largely exceeds
that of prey, the result is a decrease in prey
population and a decrease in predator population.
This is because more predators will be
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depending on a small number of prey for food,
implying that the predator’s consumption rate is
higher than the prey’s growth (increase) rate.

N-large, P-large

Given that, the number of both preys and
predators are both large. This results into an
increase in the population of both the prey and
the predator. The number of predator is directly
proportional to the number of prey, so when the
prey increases the predators also increases
because of the dependence.

N-small, P-small

When the number of the number of both preys
and predators is small, there will be a decrease in
the population of both the prey and the predator.
The number of predator is directly proportional
to the number of prey, so when the prey
decreases the predators also decreases because of
the dependence.

N-large, P-small

When the prey largely outnumbers the predators,
the result is an increase in prey population and
an increase in predator population. This is
because the number of prey on which the
predators feed is already high, the growth rate of
predators increase because there is enough prey
to feed on. These variations on the prey
populations and predator numbers in the prey-
predator model have an oscillatory character.

Equilibrium points of the model

We determine the conditions for the existence of
equilibrium points of the two systems of
equations. The two sets of equations in Case |
and that in Case Il are almost similar, therefore
the analysis done below will apply to both. The
equilibrium point of Eq(0, 0) is trivial, therefore
we will not dwell on it. When we equate
equations (4) and (6) to zero, we find that the
system has three equilibria, that is;E;(1, 0),E2 (O,
1) andE; (1, 1).

Existence of E; (N, 0) with N>0.
LetP= 0. Equation (4) gives:

b
N(l— —)(1—Nj =0

T

From this we have N=1, which implies
that N = K .Thus in the absence of predator P,
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the prey population N increases until it reaches
the carrying capacity K.

Existence of E, (0, P) with P = 0.

Let N=0. Equation (6) gives:

uP =0,

SinceP = 0, it impliesz = 0. This means that the
growth rate of the predator is zero. If the growth
rate is zero, there can be no increase in
predator’s population. Therefore the predator’s
population will tend to extinction when there is
no prey.

Existence ofEz (N, P) withN>0 andP>0.

Equation (4) gives:

b alNP
N(l——)[l—N]— — 0
T D+ N
and
alNP
uFP — =0
D+N
From these we have,
_ M
N=—=(D+N
~(D+N)
And
_ 1 b
p=-(a+w)(1——)(1—5w+w))]
o T i

Thus,E3(N,P)=
Es(*(0+n2[(0+m)(1-2) (1 ~ 4+ N])D
This exists if,b < randu < ﬁ Therefore thie

equilibrium exists if,
b = r(4)

p < ——(5)

D+N

Condition (4) 1implies that prey’s
cumulative density b, which is the regulatory
term, must be less than its growth rate r, whereas
condition (5) implies that, u < ﬁ that is, the

predator’s mortality rate must be less than the
quotient of the maximum Killing rate the sum of
saturation-constant and the population of the
prey. Therefore, Ez (N,P) exists only if
conditions (4) and (5) are in place.

Local stability of the equilibrium points

The system of equations for our model is
nonlinear therefore we use the Jacobian matrix
which enables us to linearize the system and
determine the characteristic equation. We get the
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characteristic equation by calculating [ — AL |

where J is the Jacobian matrix and A/ the identity
matrix. We then find the roots of the
characteristic function which enables us to
determine the stability of the equilibrium
solution.

The stability of each equilibrium point is studied
by computing the Jacobian matrix and finding
the eigenvalues evaluated at each equilibrium
point. We only focus on finding the local
stabilities for the non-trivial equilibrium points.
If all real eigenvalues are negative then the
equilibrium point is stable. If there is a positive
eigenvalue or an eigenvalue with a positive real
part, then the equilibrium is unstable. From
equations (4), the Jacobian matrix is given by

AN
J(E) = 3};’ 3‘;’;
dN aP

When we work out the values of each individual
element in the Jacobian matrix we get,

aN

AH—G — - -
IE= . Th e
T BT o
Where the value of,
- b aP
ar=(1-)a-m- 5

The local stability for each equilibrium point is
analyzed as follow:
E; (W, 0) = Ei(1, 0). The Jacobian matrix
evaluated at E; gives

t-) -2
f (Eij — r '..D'h::' (9)

0 B~ o

We then take the determinant of the matrix and
subtract the identity matrix A/ to obtain

(E_l)_l __aN
7(L,0) a1l = 7 (D +N)
0 S ST S

The eigenvalues of the matrix J(E;) are
ﬂ,l:G — l)andﬂ,2 =p— —

(o+n)’
These eigenvalues are negative if, b<r
andu(D+N)<a. If eigenvaluesi;

andA.areboth negative, the equilibrium is stable.
Ift < r and a < u(D + N)then at least one of

the two eigenvalues is positive. If at least one of
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the eigenvalues is positive, the equilibrium
becomes unstable.
EZ(ﬂr ﬁ):EE (':I.r D]
The Jacobian matrix evaluated at E; is
(1-2) o
J(E;) = r (10)
0 i

Taking the determinant of the matrix and
subtracting the identity matrix A/ we obtain

b
(1-2)-2 o

T

0 u—4
The eigenvalues of the matrix J(E;) are
A= [1— ;) and A, = u. Since, A, = u, and
from existence of equilibrium points, we found
out that u = 0,implying that 4, = 0.We also
know that b<r  which means that the

eigenvalue 4, is positive, hence the equilibrium
is unstable.

[7(0,0) — 41l =

Eg (.l"'_-lr, ﬁ):

Es[2(0 +n),2 {0 +™) (1- 3)(1 ~- L+ N])}]

The Jacobian matrix evaluated at E3 is i)
_[4 n©

I(E;) = [—3; ﬂ} (11) i)

Where

A;‘:(i— f)(1— %(D+N})—NLN[(D+N](1—g)(1—£(D+NJ)]

b Jz
- (D+N](1— ;)(1— E[D+Nj)]
The determinant of the matrix is found by )

B =

u 1 N PP
# ! YA BN
)
This givesA® — 145 — uB; = 0,
,1:—[(1— %)(1—%(D+N})‘$[(D+N](l—é)[1_§(D+N])] I i)
val0 0 (i) (s 20 0] 0 (12)

According to the quadratic formula, the solutiof¥-)
are
4o A +./(—A41)2 + 4uB;

2
The eigenvalues are positive if the value
generated by the radical is less than A7, and with
all parameter values positive, and the
eigenvalues are negative if the value generated
by the radical is more than Aj. Hence, we have
stable equilibrium when the eigenvalues are
negative and an unstable equilibrium when tHé)
eigenvalues are positive.
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This is possible only when conditions (6) and (7)

are put in place, that is, b < r and u < ﬁ

b < r, implies that prey’s cumulative density b,
which is the regulatory term, must be less than
its growth rate r, whereas u < ~—, implies that,

predator’s mortality rate must be less than the
quotient of the maximum Killing rate over the
sum of half-saturation constant and the prey
density.

Global stability of the equilibrium points
Definition 1: Positive definite

A function V(x, y) which is continuously
differentiable is to be positive definite in a
region U that contains the origin if

V(0,0)=0

V(x) = 0andV(yv) = 0, forall x,v € u—{0}.

Definition 2: The Lyapunov function

A Lyapunov function V(x)y) is defined as
follows;

V and all its partial derivatives i

Gl are
8x "8y

continuous.

V is positive, that is, V(0, 0) = 0 if and only if
x=1xy,y=vyyand Vi(x)=0,

V(v) = 0, forallx,v € U —{0}.

A Lyapunov function V(x, y) for a system is said
to be

Positive  definite  ifi’{x,¥) =0 for all
x,y EuU—{okL
Positive semi-definite ifV(x,v) =0 for all
x,y EU—{0kL
Negative  definite ifV’(x,y) <0 for all
x,y EU—{0kL

Negative semi-definite V(x,¥) <0 for all
x,y EuU—{okL

Definition 3: Lyapunov stability theorem

Let (%,%) be the equilibrium point of the
differential equation * = f(x,v) and V(x,v)
be a continuously differentiable positive definite
function in the neighbourhood of the origin.

If V(x,v) < 0,¥ x,y € U—{0}, then the origin
is stable (Lyapunov stable).

If V(x,y)<0,¥vx,y €uU—{0}then the origin
is uniformly asymptotically stable.

©2020 The Authors. Published by G. J. Publications under the CC BY license. 9
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If V(x,¥) = 0,¥x,v €U—{0}, then the origin
is unstable.

Therefore a function V(x,v) is a Lyapunov
function if

Viz,v)=0,onlyifx=x,,v =y,

V(ix,v) = 0,¥x,y €uU—{0}

Vix,yv) <0,¥vVx,y €u—{0}

If V(x,¥) < 0, then V(x,v) is a strict Lyapunov.
To get V(x,v), for a two dimensional system,

the following formula is used:
W vy = 8 _w L
dt Y T axdt Tay'dt ox. " ay’
It is easy to verify that V is zero at the
equilibrium and is positive for all values of x and
y, from the definitions stated above.

The non-trivial global stabilities that we are
going to look for are those of E,, E; and Ej.

E,(1,0)

We  consider a  Lyapunov
asV(N,0)=N— N — Niﬂ(ﬁ_)

Global stability of E, (N,0) =

function

Differentiating V with respect to time t we get,
vn0) = (2= N N(t)
AN
Substituting N (t)using equation (4) gives,
) r b aP
o= - [i- w2
For E; (W, 0), P = 0. Thus,
. r b
V(N,0) = (N — ) (1 - —) (1— Nj]
L T
From this we get,

V(N,P) = (N - ) (§+ﬁ+i—ﬁ)—(k+

T

This simplifies to, V(N,P) = —(N — ) [1 + E]
Hence
stable.

Global stability of E,(0,P) = E,(0,0)

E,(N,0) is globally asymptotically

We use the
functionV’(0,P) = P —P — P In (%),
Differentiating V with respect to time t we get,
v(0,P) = (55) (2.

Substituting N(t) and B(t) using equation (6)
gives,

Lyapunov

avdy av oV

Prey-predator mathematical system analysis through Lyapunov function

. P —-P\ .,
v(o,P) = (—) P(t)
FI
From this we get,
alN

v(0,P) = (P — F) T

D+ N
This simplifies to,

V(0,P)=—-(N-N)(P-P) [(D n ﬂTja(D + NJ]

Hence E,(0,P)is Lyapunov stable.

Global stability of E; (N,P)

Consider the following Lyapunov function,
. _ (N _ P
V(N.P) =N—-N—NIn (ﬁ)—FP—P—Plﬂ, (5)

Differentiating V with respect to time t, we get,

V(N,P) = (” ~ N) N + (E)pm
Substituting in the expression for N(t) and
B(t) from equation (4), we get

voun = w-ml(i-7) 5r* Pl 554
From this we get,
1‘:(N,pj=(N—m[(b+N+b—N+ P _ e _eP )]

+(P—P)

D+N D+ Nl
This simplifies to,

D"[N,Pj -(N- :’*TJ[H'}—(N N)(P- ‘ﬁj[mv}lﬂﬂ}}

a
—(P—F
(P=P) [(D—i— M (D + N]]
Therefore,E;(N, P) is globally asymptotically
stable.

In this chapter, we looked at the

N + — Jaxistence of all the possible three equilibrium

oints. At each point, we identified conditions
necessary for them to exist. It was found out that
cereal aphids can exist on their own in the
absence of ladybirds. However, their population
would increase until it reaches the host plants
carrying capacity K, then start to reduce all over
again resulting into a periodic nature of
population change. The ladybird cannot exist on
their own in the absence of aphids, which they
feed on. The co-existence of these two species
requires b <r and ph < ﬁ These

inequalities show the parameters that must be
controlled for this co-existence to occur.

©2020 The Authors. Published by G. J. Publications under the CC BY license. 10
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The conditions for local and global stability were
also established. The conditions for the local
stability were in most cases found to be similar
to those for the existence. The conditions for the
global stability states E,,E, and E; were

established by developing a suitable Lyapunov
function. With the differentiated Lyapunov
function, it was found that E; and E; each gave

a negative value, hence were globally
asymptotically stable. E;, was Lyapunov stable.

The conditions necessary for the global stability
state of E; are similar to those for existence. For

the global stability of the co-existence of the
prey and the predator, the prey’s death rate must
be less than its growth rate. Also, the predator’s
mortality rate must be less than the quotient of
the maximum killing rate over half the sum of
the saturation rate and the population of the prey.

Conclusions

The damage aphids’ cause to the crops as well as
loss of yields can be extensive if not contained.
However, to contain these pests, it is important
to understand its dynamics in relation to its
interaction with its natural enemies like the
ladybird. In this study, we have constructed sets
of mathematical models, by adjusting the
function  representing  the  prey-predator
interaction.
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