
International Journal of Modern Computation, Information and Communication Technology  

2020;3(1):5-11. 

ISSN: 2581-5954 

                            http://ijmcict.gjpublications.com                                                                                                                                                                                         

Research Article 

Received: 25.12.2019; Received after Revision: 09.01.2020; Accepted: 10.01.2020; Published: 16.01.2020 
©2020 The Authors. Published by G. J. Publications under the CC BY license.                         5 

 

Prey-Predator Mathematical System Analysis through Lyapunov Function 

Judith J. E. J. Ogal, N. B. Okelo 

School of Mathematics, Statistics and Actuarial Science, 

Jaramogi Oginga Odinga University of Science and Technology, 

P. O. Box 210-40601, Bondo-Kenya. 

*Corresponding author’s e-mail: bnyaare@yahoo.com 

Abstract 

Pests are very important in crop production especially aphids are important pests which cannot be 

ignored in agriculture. The damage they cause to these crops as well as loss of yields can be extensive if 

not contained. However, to contain these pests, it is important to understand its dynamics in relation to 

its interaction with its natural enemies like the ladybird. In mathematics, the best tool that can be used to 

understand this prey-predator dynamics is the models which have different variables and parameters 

that represent the various aspects of the dynamics of the prey-predator system that we are interested in. 

In this study, we have therefore gone an extra mile to construct sets of mathematical models, by 

adjusting the function representing the prey-predator interaction. 
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Introduction 

In [1] the authors discussed forecasting cereal 

aphid outbreaks. They modelled the effects of 

coccinellids, parasitoids and disease. In their 

model, they used steps of model initialization, 

data input, hourly temperatures, immigration, 

development and survival, reproduction and 

morph determination, predators, output, crop 

development model and input variable. The 

advection term represented the predator density 

movement according to a basic prey taxis 

assumption: acceleration of predators is 

proportional to the prey gradient. The prey 

population reproduced logistically, and the local 

population interactions followed the Holling 

Type II function. Their spatially explicit model 

subdivided the predation process into random 

movement represented by diffusion, directed 

movement was described by prey taxis, local 

prey encounters, and consumption modelled by 

trophic function. The model enabled studying the 

effects of large-scale predator spatial activity on 

population dynamics.  

 In [2] the authors came up with a logistic 

model with variable carrying capacity and 

growth rate affected by cumulative density to 

study the population dynamics of aphids. In [3], 

a flux-based model to describe an aphid-

parasitoidal system in a closed structured 

environment has been presented. They applied 

this approach to the Aphis gossypii and to one of 

its parasitoids, Lysiphlebu testaceipes in a melon 

green house. They developed a model showing 

host-parasitoidal interactions. The model 

represented the level of plant infestation as a 

continuous variable corresponding to the number 

of plants bearing a given density of pests at a 

given time. They used partial differential 

equations to describe the variation of this 

variable, which was coupled to an ordinary 

differential equation and a delay-differential 

equation that described the parasitized host 

population and the parasitoid population, 

respectively.  

 A study in [4] presented a management 

alternative for the control of pest species through 

intraguild predation for the spatially 

homogeneous system. They extended the model 

to include movement of predator and prey in the 

spatial context. They considered a spatially 

homogeneous system and found the conditions 

for predator and prey to exclude each other, to 

coexist and for alternative stable states. Other 

studies in [5-10] presented a general framework 
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for age-structured predator-prey systems where 

individuals were divided into two classes, 

juveniles and adults, and several possible 

interactions considered. They used the 

Rosenzweig-MacArthur prey-predator model 

which they extended to include delay. They then 

reduced the initial system of partial differential 

equations to a system of (neutral) delay 

differential equations with one or two delays. In 

this project, we have extended the mathematical 

background given by Rosenzweig-MacArthur 

prey-predator model using the work done by 

[11]. We first formulate two sets of Rosenzweig-

MacArthur prey-predator model with one 

predator and the prey, and then solve them 

analytically and numerically. The second set of 

the model seeks to modify and thus give a more 

accurate analysis of data compared to the first set 

of the model. 

Terminologies 

Aphid density: number of aphid per plant. 

Carrying capacity: the population size of the 

species that the environment can sustain 

indefinitely, given the food, habitat, water and 

other necessities are available in the 

environment. 

Cumulative density: total number of aphids. 

Economic injury level: the smallest number of 

insects (amount of injury) that will yield losses 

equal to the insect management cost . 

Economic threshold: the pest density at which 

management action should be taken to prevent 

an increasing pest population from reaching the 

economic injury level. 

Fecundity: the actual reproductive rate of an 

organism or population, measured by the number 

of gametes (eggs), seed set or asexual propagules 

Integrated pest management: is an effective and 

environmentally sensitive approach to pest 

management that relies on a combination of 

common-sense practices. 

Mortality: death rate. 

Oviposition: laying eggs. 

Voracity: eagerness to consume great quantities 

of food. 

Research methodology 

The varying nature of the soluble nitrogen in the 

host plants, which is a good indicator of host 

quality, explains the assumption of the varying 

carrying capacity. On the other hand, in the 

cumulative density model incorporated above, 

the assumption is that the cumulative density is 

the regulatory term that slows down the 

instantaneous rate of increase. This is pegged on 

the assumption that it is the sum of the number 

of individuals multiplied by their life span, 

which determines the slowing down of the 

instantaneous rate of increase. Thus it could 

influence food quality and hence slow down 

population rate of increase. The advantage of the 

Kindlmann model [6] is that it gives the most 

flexible model. However, its limitation is that 

there is the problem of how to measure the time 

varying carrying capacity. The focus of this 

project is predation as a means of pest control. 

We particularly look at Coccinellidae (ladybird 

beetles) as our predator. Many studies have been 

conducted on ladybirds as aphid predators 

because they are visible and also have economic 

importance to a variety of crops. The larvae and 

adults of coccinellids feed on the same type of 

prey species and occur in identical habitats [3]. 

The lifetime fecundity of Coccinellid varies 

greatly between species and may range from 

slightly more than 100 to more than 1500 eggs 

per female. Developmental times varies greatly 

between species and is influenced by 

temperature, the amount of food consumed and 

prey species [5]. 

Results and discussions  

Consider the system  

     1(a) 

 

and 

 1(b) 

 

Without loss of generality we simplify the 

models by taking ah = 1. Hence the above 
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equations 1(a) and (b) respectively in 

respectively can be written as indicated below. 

 

           (2) 

 

 
                                                                       (3) 

 
Where, N>0 and P>0, respectively. This implies 

that allthe parameters in the model are positive. 

We then perform non-dimensionalization to 

reduce the number of parameters in the model in 

equation (2) and (3) by reducing ,   and  into 

non-dimensional form using, 

 
Then, further by setting the 

parameters   then 

dropping the sign, we find that the equations (2) 

and (3) take the form in equations (4) and (5) 

respective 

 4(a) 

   4(b) 

 

 5(a) 

   5(b) 

N (0)>0 and P(0)>0, respectively. 

 The parameters in our analysis of the 

prey-predator interaction, which we have gotten 

from a previous study, give us fixed values for 

these parameters. However, the time span and 

the densities of the prey/ predator vary. The 

variation of initial prey’s density, N, or the initial 

predator’s density, P, have an effect on the both 

the prey and predators population. We explore 

four possible variations illustrated as (i), (ii), (iii) 

and (iv), below: 

N-small, P-large 

When the number of predators largely exceeds 

that of prey, the result is a decrease in prey 

population and a decrease in predator population. 

This is because more predators will be 

depending on a small number of prey for food, 

implying that the predator’s consumption rate is 

higher than the prey’s growth (increase) rate. 

N-large, P-large 

Given that, the number of both preys and 

predators are both large. This results into an 

increase in the population of both the prey and 

the predator. The number of predator is directly 

proportional to the number of prey, so when the 

prey increases the predators also increases 

because of the dependence. 

N-small, P-small 

When the number of the number of both preys 

and predators is small, there will be a decrease in 

the population of both the prey and the predator. 

The number of predator is directly proportional 

to the number of prey, so when the prey 

decreases the predators also decreases because of 

the dependence. 

N-large, P-small 

When the prey largely outnumbers the predators, 

the result is an increase in prey population and 

an increase in predator population. This is 

because the number of prey on which the 

predators feed is already high, the growth rate of 

predators increase because there is enough prey 

to feed on. These variations on the prey 

populations and predator numbers in the prey-

predator model have an oscillatory character. 

Equilibrium points of the model 

We determine the conditions for the existence of 

equilibrium points of the two systems of 

equations. The two sets of equations in Case I 

and that in Case II are almost similar, therefore 

the analysis done below will apply to both. The 

equilibrium point of E0(0, 0) is trivial, therefore 

we will not dwell on it. When we equate 

equations (4) and (6) to zero, we find that the 

system has three equilibria, that is;E1(1, 0),E2 (0, 

1) andE3 (1, 1). 

Existence of E1 ( , 0) with >0. 

LetP= 0. Equation (4) gives: 

 
From this we have N=1, which implies 

that  .Thus in the absence of predator P, 
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the prey population N increases until it reaches 

the carrying capacity K. 

 

Existence of E2 ( ) with  

Let N=0. Equation (6) gives: 

 
Since  it implies . This means that the 

growth rate of the predator is zero. If the growth 

rate is zero, there can be no increase in 

predator’s population. Therefore the predator’s 

population will tend to extinction when there is 

no prey. 

Existence ofE3 ( , ) with >0 and >0. 

Equation (4) gives: 

 
and 

 
From these we have,  

 
And 

 
Thus,E3( , )= 

E3  

This exists if, and . Therefore the 

equilibrium exists if, 

(4)                                   

(5) 

 Condition (4) implies that prey’s 

cumulative density b, which is the regulatory 

term, must be less than its growth rate r, whereas 

condition (5) implies that, , that is, the 

predator’s mortality rate must be less than the 

quotient of the maximum killing rate the sum of 

saturation-constant and the population of the 

prey. Therefore, E3 ( , ) exists only if 

conditions (4) and (5) are in place. 

Local stability of the equilibrium points 

The system of equations for our model is 

nonlinear therefore we use the Jacobian matrix 

which enables us to linearize the system and 

determine the characteristic equation. We get the 

characteristic equation by calculating  

where J is the Jacobian matrix and λI the identity 

matrix. We then find the roots of the 

characteristic function which enables us to 

determine the stability of the equilibrium 

solution. 

The stability of each equilibrium point is studied 

by computing the Jacobian matrix and finding 

the eigenvalues evaluated at each equilibrium 

point. We only focus on finding the local 

stabilities for the non-trivial equilibrium points. 

If all real eigenvalues are negative then the 

equilibrium point is stable. If there is a positive 

eigenvalue or an eigenvalue with a positive real 

part, then the equilibrium is unstable. From 

equations (4), the Jacobian matrix is given by 

 
When we work out the values of each individual 

element in the Jacobian matrix we get, 

(8) 

Where the value of, 

 
The local stability for each equilibrium point is 

analyzed as follow: 

i. E1 ( , 0) = E1(1, 0). The Jacobian matrix 

evaluated at E1 gives 

(9) 

We then take the determinant of the matrix and 

subtract the identity matrix λI to obtain 

 
 

The eigenvalues of the matrix J(E1) are 

 and . 

These eigenvalues are negative if,  

and  If eigenvaluesλ1 

andλ2areboth negative, the equilibrium is stable. 

If  and then at least one of 

the two eigenvalues is positive. If at least one of 
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the eigenvalues is positive, the equilibrium 

becomes unstable.  

ii. E2( )=  

The Jacobian matrix evaluated at E2 is 

         (10) 

Taking the determinant of the matrix and 

subtracting the identity matrix λI we obtain 

 
The eigenvalues of the matrix J(E2) are 

  and .  Since, , and 

from existence of equilibrium points, we found 

out that ,implying that We also 

know that   which means that the 

eigenvalue  is positive, hence the equilibrium 

is unstable. 

E3 ( , )=  

E3  

The Jacobian matrix evaluated at E3 is 

     (11) 

Where 

 

 
The determinant of the matrix is found by  

 
This gives , 

(12) 

According to the quadratic formula, the solutions 

are 

 
The eigenvalues are positive if the value 

generated by the radical is less than , and with 

all parameter values positive, and the 

eigenvalues are negative if the value generated 

by the radical is more than   Hence, we have 

stable equilibrium when the eigenvalues are 

negative and an unstable equilibrium when the 

eigenvalues are positive.  

This is possible only when conditions (6) and (7) 

are put in place, that is,  and .  

, implies that prey’s cumulative density b, 

which is the regulatory term, must be less than 

its growth rate r, whereas , implies that, 

predator’s mortality rate must be less than the 

quotient of the maximum killing rate over the 

sum of half-saturation constant and the prey 

density. 

Global stability of the equilibrium points 

Definition 1: Positive definite 

A function V(x, y) which is continuously 

differentiable is to be positive definite in a 

region  that contains the origin if 

V(0, 0) = 0 

and  , for all  . 

Definition 2: The Lyapunov function  

A Lyapunov function V(x,y) is defined as 

follows; 

i.) V and all its partial derivatives   are 

continuous. 

ii.) V is positive, that is, V(0, 0) = 0 if and only if 

 and    , 

, for all . 

A Lyapunov function V(x, y) for a system is said 

to be  

i.) Positive definite if  for all 

 

ii.) Positive semi-definite if  for all 

 

iii.) Negative definite if  for all 

 

iv.) Negative semi-definite  for all 

 

Definition 3: Lyapunov stability theorem 

Let  be the equilibrium point of the 

differential equation   and   

be a continuously differentiable positive definite 

function in the neighbourhood of the origin. 

i.) If  then the origin 

is stable (Lyapunov stable). 

ii.) If then the origin 

is uniformly asymptotically stable. 
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If  then the origin 

is unstable. 

Therefore a function  is a Lyapunov 

function if 

, only if  

 

 

If  then  is a strict Lyapunov. 

To get  for a two dimensional system, 

the following formula is used: 

 
It is easy to verify that V is zero at the 

equilibrium and is positive for all values of x and 

y, from the definitions stated above.  

The non-trivial global stabilities that we are 

going to look for are those of  and   

Global stability of  

We consider a Lyapunov function 

as  

Differentiating V with respect to time t we get, 

 
Substituting using equation (4) gives, 

 
For E1 ( , 0), . Thus, 

 
From this we get, 

 

This simplifies to,  

Hence   is globally asymptotically 

stable. 

Global stability of  

We use the Lyapunov 

function . 

Differentiating V with respect to time t we get, 

. 

 Substituting  and  using equation (6) 

gives, 

 
From this we get, 

 
This simplifies to, 

 
Hence  is  Lyapunov stable. 

i. Global stability of  E3 ( , ) 

Consider the following Lyapunov function, 

 
Differentiating V with respect to time t, we get, 

 
Substituting in the expression for   and  

 from equation (4), we get 

 
From this we get, 

 

 
This simplifies to,  

 
Therefore,  is globally asymptotically 

stable.  

 In this chapter, we looked at the 

existence of all the possible three equilibrium 

points. At each point, we identified conditions 

necessary for them to exist. It was found out that 

cereal aphids can exist on their own in the 

absence of ladybirds. However, their population 

would increase until it reaches the host plants 

carrying capacity K, then start to reduce all over 

again resulting into a periodic nature of 

population change. The ladybird cannot exist on 

their own in the absence of aphids, which they 

feed on. The co-existence of these two species 

requires   and   . These 

inequalities show the parameters that must be 

controlled for this co-existence to occur. 
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The conditions for local and global stability were 

also established. The conditions for the local 

stability were in most cases found to be similar 

to those for the existence. The conditions for the 

global stability states  and    were 

established by developing a suitable Lyapunov 

function. With the differentiated Lyapunov 

function, it was found that   and   each gave 

a negative value, hence were globally 

asymptotically stable.  was Lyapunov stable. 

The conditions necessary for the global stability 

state of   are similar to those for existence. For 

the global stability of the co-existence of the 

prey and the predator, the prey’s death rate must 

be less than its growth rate. Also, the predator’s 

mortality rate must be less than the quotient of 

the maximum killing rate over half the sum of 

the saturation rate and the population of the prey. 

Conclusions 

The damage aphids’ cause to the crops as well as 

loss of yields can be extensive if not contained. 

However, to contain these pests, it is important 

to understand its dynamics in relation to its 

interaction with its natural enemies like the 

ladybird. In this study, we have constructed sets 

of mathematical models, by adjusting the 

function representing the prey-predator 

interaction.  
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