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Abstract 

It is known that one of the most elementary and functional notions of finiteness in analysis, algebra and 

topology is the notion of compactness yet mathematicians work with many non-compact topological 

spaces, which have applications that require some properties of compact spaces. The purpose of this 

paper is to check the conditions under which if Z is a compactification of W, under what condition can a 

continuous real-valued function defined on W be extended continuously to Z where Z is  an ε - 

compactification of W. 
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Introduction 

One of the most elementary and functional 

notions of finiteness in analysis, algebra and 

topology is the notion of compactness. Ennis and 

Vielma in [1] introduced the concepts of 

 and  

. They showed that 

every  T2 and 

has an 

. Max in [2] 

investigated spaces that have a maximal finite 

compactification. These are spaces that have 

compactifications with N-point remainder, but 

no compactification with N+1-point remainder. 

In a sense, mathematicians wished to distill out 

some properties of large spaces by looking at 

compact spaces that resemble these large spaces. 

As such, it is in this vein that the concept of 

compactifying large spaces led to the piecewise 

development of the Stone-Cech 

compactification,  for a topological space X.   

 In [3], Tarizadeh and Rezaee gave new 

advances on the compactifications of  

topological spaces, in particular on the 

Alexandroff and Stone-Cech  compactification. 

In [4], The Stone-Cech compactification is 

considered to be one of the most important 

universal properties in topology due to its 

importance in applications that range from 

Ramsey theory and topological dynamical 

systems to computing the dual space of , 

the space of bounded sequence of real numbers.  

 In mathematical discipline of general 

topology [4], Stone-Cech compactification is a 

technique for constructing a universal map from 

a topological space X, to a compact Hausdorff 

space . The Stone-Cech compactification  

of a topological space X is the largest compact 

Hausdorff space generated by X, in the sense that 

any map from X to a compact Hausdorff space 

factors through ( in a unique way). 

 Munkress and James [5] defines a 

compactification of a topological space  as a 

compact Hausdorff space Y containing  as a 

subspace such that . In order to move past 

the naïve intuition behind the historical notion on 

finiteness, the mathematical community required 

the leadership and direction of mathematicians 

such as Bernhard Riemann, John Von Neumann 

and Marshall Stone.  In [6], Riemann provided 

the first example of a compactification using the 

intuitively infinite and non- compact topological 

space  with the construction of the Riemann 

sphere. The Riemann sphere is what is known as 

the one-point compactification of the complex 

plane .  
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Research methodology 

Definition 1.1 [7, Definition 2.6] 

All subspaces of compact Hausdorff spaces are 

completely regular Hausdorff spaces as those 

that can be compactified. Such spaces are now 

called Tychonoff spaces. In topology and related 

branches of mathematics, Tychonoff spaces and 

completely regular spaces are kinds of 

topological spaces. 

Definition 1.2 [8, Definition 1.0] 

A metric space X is said to be compact if every 

sequence in X has a convergent subsequence. A 

subset M of X is said to be compact if M is 

compact considered as a subspace of X, that is 

every sequence in M  has a convergent sequence 

whose limit is an element of M. 

Definition1.3 [9, Definition 2.2] 

A space X is said to be locally compact at x if 

there is some compact subset C of X that 

contains a neighborhood of x. If X is locally 

compact at each of its points, X is said to be 

locally compact. 

Definition 1.4 [10, Definition 3.0] 

A topological space X is called a Hausdorff 

space if for each pair, of distinct points of 

X, there exists neighborhood  of 

 respectively that are disjoint. 

Lemma 1.5 [11, Lemma 1.0] 

X is a normal topological space if and only if 

whenever A,B are disjoint closed sets in X then 

there exists a continuous function 

Theorem 1.6 [12, theorem 1.1] 

An arbitrary product of compact spaces is 

compact in the product topology. 

Theorem 1.7 [13, theorem 2.0] 

The completely regular spaces are precisely 

those spaces which can be embedded in a 

product of copies of the closed unit interval 

 

Remark 1.7.1 

As compact Hausdorff spaces are normal spaces 

[6], combining Urysohn’s lemma with 

Tychonoff’s theorem for completely regular 

spaces gives us the following crucial nugget of 

topological information: 

‘No larger class of topology spaces can be 

studied by means of embeddings into compact 

Hausdorff spaces.’ 

This means that we need only to look at 

completely regular spaces when defining our 

desired compactification. 

Definition 1.8 [14, Definition 3.3] 

Let X and Y be topological spaces. Let  

be a bijection.If both the functions f and the 

inverse function are continuous, 

then f is called a homeomorphism. 

Definition 1.9 

A filter on a set X is a collection  of subsets of 

X satisfying: 

i.  

ii. If  and  then  

iii. A finite intersection of sets in  is in 

 

Definition 2.0 

An ultrafilter on a set X is a filter  on X which 

is maximal with respect to inclusion i.e it is a 

filter  for which any other filter  on X 

satisfying  on X satisfying actually 

satisfies .Every Principal filter is an 

ultrafilter. 

Definition2.1 [15, Definition 1.1] 

Let X and Y be topological spaces. The product 

topology on X Y is the topology having as 

basis the collection  of all sets of the form, 

U V where U is an open subset of X and V is an 

open subset of Y 

Definition 2.2 

Suppose that one-point sets are closed in X. Then 

X is said to be regular if for each pair consisting 

of a point x and a closed set B disjoint from x, 

there exists disjoint open sets containing x and B 

respectively. 

Definition 2.3 

A space X is completely regular if one point sets 

are closed in X and if for each point  and each 

closed set A not containing , there is a 

continuous function f:X [0,1] such that f( )=1 

and f(A)={0} 
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Definition 2.4 

A compactification of a space X is a compact 

Hausdorff space Y containing X such that X is 

dense in Y (that is ).Two 

compactifications  of X are said to be 

equivalent if there is a homeomorphism 

 such that h(x)= x  

Results and discussions  

In this section, we give the results. We begin 

with the following remark. 

Remark 3.0.0:  

In order for W to have a compactification, W 

must be completely regular. Conversely, every 

completely regular space has at least one 

compactification.‘If Z is a compactification of 

W, under what condition can a continuous real-

valued function  f defined on W be extended 

continuously to Z? We express the answer to this 

question in the following theorems: 

Theorem 3.0.1 

Let W be completely regular; let  be its 

compactification. Then every bounded 

continuous real-valued function on W can be 

uniquely extended to a continuous real-valued 

function on  

Proof 

The compactification  is induced by the 

imbedding (defined 

by the rule 

r(w)=( .This means that  there is an 

imbedding that equals r when 

restricted to the subspace W of  Given a 

continuous bounded real-valued function on W it 

equals . Now if  is 

projection onto the  coordinate then the 

composite map  is  the desired 

extension of  for if  we have  

 

Theorem 3.0.2  

Let W be completely regular. Let  be 

two compactifications of W having the extension 

property. Then there is a homeormorphism 

 of  such that 

 

Proof:  

Case 1: Suppose Z is a compactification of W 

having the extension property. If M is any 

compact Hausdorff space and n:  W M is any 

continuous function, then n can be extended to a 

continuous function t mapping  into M. To 

prove this fact, note that M is completely regular 

so that it can be imbedded in . So we 

may as well assume that . Now 

consider . Each 

component function  of the map n is a 

continuous bounded real-valued function on  W 

; by hypothesis,  can be extended to a 

continuous map  of Z into .  Define 

 by setting  t(z)= . The map t is 

continuous because  has the product topology. 

We assert that t actually maps Z into the 

subspace M. For n(w) is contained in M and  

t(  W)= n(  W). Since M is closed in , it 

follows that . By continuity of t, t(z) 

= t( Therefore t maps Z into M. 

Case 2: Consider the inclusion mapping 

It is a continuous map of  W into 

the compact Hausdorff space . Because  

Has the extension property, we may by step 1, 

extend  to a continuous map 

Similarly, we may extend the 

inclusion map to a continuous map 

The composite  has 

the property that , one 

has  Therefore  is a 

continuous extension of the identity map 

. But the identity map of is also 

a continuous extension of . By uniqueness of 

extensions,  must equal the identity map of 

. Similarly  must equal the identity map 

of . Thus  and  are homeomorphisms. 

Conclusions 

The concept of compactification in analysis, 

algebra and topology has been studied over a 

period of time. Various ways in which a 

compactification can be constructed include the 

use of: s, Products, ultrafilters and 

even natural numbers. ‘If Z is a compactification 

of W, under what condition can a continuous 

real-valued function  f defined on W be 

extended continuously to Z? In this paper we 

have shown that there exists an  -

compactification Z on a Topological space 

provided W is completely regular.  
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