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Abstract 

In the present work, authors established derivation properties and range-kernel orthogonality of finite 

rank inner derivations implemented by finite rank hyponormal operators. The results show that an inner 

derivation is linear and bounded. Also by inner product trace and properties of adjoint, the inner 

derivation is self-adjoint if the inducing operator is self-adjoint. For orthogonality, we employ operator 

techniques such as properties of operators and derivation inequalities due to Anderson, Bouali, Maher, 

Mecheri and Halmos generalization formula to establish the orthogonality. 
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Introduction 

As an area of research, derivation properties and 

range-kernel orthogonality has attracted many 

mathematicians. For instance [1] introduced the 

notion of orthogonality in Banach spaces which 

generalizes the usual orthogonality in Hilbert 

spaces while as [2, 3] established operator norm 

for inner derivations. In [4] they characterized 

inner derivation with orthogonality and for 

normal operators established  orthogonality 

inequality; ǁAX – XA + Tǁ  ǁTǁ for all X ϵ B(H) 

which implies range-kernel orthogonality for 

inner derivation. Here orthogonality is defined in 

[5] sense where x ϵ H is said to be B-orthogonal 

to y ϵ H if ǁx + λyǁ ≥ ǁxǁ. In normed spaces [6, 7, 

8] established that Birkhoff orthogonality 

implies best approximation and best best 

approximation implies Birkhoff orthogonality 

and thus the significance of this sense of 

orthogonality [9,10].  

 With respect to von Neumann Schatten 

p-class, , [11] has established range-kernel 

orthogonality inequality; ǁAX – XA + Tǁp  ǁTǁp 

for all X ϵ B(H) and for a normal operator A ϵ 

B(H) which commutes with T ϵ . In the 

context of the structure of a compact vector 

space and Hilbert-Schmidt norm, Range 

properties of derivation have been established by 

[12]. Furthermore it has been established that a 

derivation in B(H) is also an inner derivation. 

This is the case only in finite dimension where 

the properties of adjoint operators are also 

inherited by inner derivation. However an inner 

derivation is also a derivation in general [13]. 

Operators in   are significant and they have 

been used by [14] to establish operators in  

   to be nilpotent if P(A) is normal, 

isometric or co-isometric for some polynomial P. 

Also if A ϵ B(H) is subnormal and has a cyclic 

vector or if is isometric, then    = 

{0}.   

Hyponormal operator is a generalization of many 

other classes of operators such as finite, normal 

and log-hyponormal operators. Range-kernel 

orthogonality conditions for such large class of 

operators have been established by minimization 

procedures. For instance for hyponormal 

operator A ϵ B(H) such that AT = TA where T  

is an isometry, then  in [15] we have ǁT + AX – 

XA ǁ ≥ ǁTǁ for all X ϵ B(H). The inequality still 

holds if X
*
 is hyponormal operator which 

commutes with an isometric operator, T. By 

using the power norm equality and by 

compactness properties of hyponormal operators, 

[16] established approximation results for 

paranormal operators which in turn has been 

used to establish orthogonality.  
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To establish the required result we use 

orthogonality inequalities due to  [17, 18, 19] 

and in [20] for normal operators, orthogonal 

decomposition, algebraic direct sum of 

operators, algebraic properties of projections and 

adjoint operators, matrix decomposition of 

operators, computational skills and techniques to 

establish range-kernel orthogonality inequalities 

for finite rank hyponormal operators. We take  

 to denote the algebra of all finite rank 

hyponormal operators acting on an infinite 

dimensional Hilbert space H, R(  to be range 

of inner derivation  and its corresponding closure 

as ,  the commutator of A ϵ  and  

ker  the kernel of inner derivation [21].  

Research methodology 

Preliminaries 

In this section, we start by defining some key 

terms that are used in the present work. 

Definition 2.1 ([13], Definition 1.2.26) The rank 

of operator A is the dimension of its range. A 

finite rank operator is a bounded linear operator 

between Banach spaces whose range is of finite 

dimension. 

Definition 2.2  ([10], Definition 2.1) 

Orthogonalities:  

Let x, y ∈ H be vectors then; (i). x is 

orthogonal to y written as x ⊥ y , if   = 0 

(ii). x is Birkhoff orthogonal to y denoted as 

x ⊥B y if ∥x + λy∥ ≥ ∥x∥ for all λ ∈ . 

(iii). x is Roberts orthogonal to y denoted as 

x ⊥R y if ∥x + λy∥  = ∥x - λy∥ for all λ ∈ . 

iv). x is isosceles orthogonal to y denoted as 

x ⊥i y if ∥x + y∥ = ∥x - y∥ 

v). x is James orthogonal to y denoted as x 

 y if ∥y + λx∥ ≥ ∥x∥ for all λ ∈ . 

vi). x is Singer orthogonal to y denoted as x 

 y if x = 0 and y = 0. 

Definition 2.3 ([1], Definition 1.3.3) The 

orthogonal complement A⊥ of a subset A is 

the set of vectors orthogonal to A i.e A⊥ = x 

∈ H : x ⊥ y for all y ∈ A. Subsets A and B of 

H are orthogonal written as A ⊥ B if x ⊥ y 

for every x ∈ A and y ∈ B. 

Definition 2.4 ([18], Theorem 4) Let B(H) 

be the algebra of all bounded linear 

operators acting on Hilbert space H. The 

mapping  : B(H)  B(H) is called an 

inner derivation defined as  (X) =AX – 

XA. 

Definition 2.5 ([15], Definition 4.5) Let H 

be a Hilbert space and B(H) be equipped 

with the operator norm. The operator  

defined on the Banach space B(H) is 

equipped with the operator norm ǁ Xǁ = 

sup{ǁ Xǁ : ǁXǁ = 1} for all X ϵ B(H). 

Definition 2.6 ([4], Section 2) Let T  B(H) be 

compact. Then s1 (T) s2(T) … 0 are the 

singular values of T i.e the eigenvalues of T = 

 counted according to multiplicity and 

arranged in descending order. For 1 p  ∞, Cp= 

Cp (H)is the set of those compact T  B(H) with 

finite p-norm, p=  = 

. 

Definition 2.7 ([17], Definition 12.11) If T 

is an operator on Hilbert space H and T
*
 is 

the respective adjoint then: 

i) T is normal if TT
*
 = T

*
T 

ii) T is self adjoint or Hermitian if T = T
*
  

iii) T is unitary if TT
*
 = I = T

*
T 

iv) T is idempotent if T
2
 = T 

v) T is nilpotent if T
n
 = 0 for all n ϵ  

vi) T is a projection if T
2
 = T and T

*
 = T 

vii) T is binormal if (T
*
T)(TT

*
) = 

(TT
*
)(T

*
T) 

viii) T is hyponormal if  TT
*
 ≤ T

*
T  

ix) T is semi-normal if TT
*
 ≤ T

*
T or TT

*
 ≥ 

T
*
T i.e. either T or T

*
 is hyponormal. 

x) T is quasinormal if it commutes with T
*
T 

i.e. T(T
*
T) = (T

*
T)T 

xi) T is normaloid if ǁTǁ = r(T) where r(T) is 

the specral radius of T. 

Definition 2.8 ([9], Problem 127) An 

isometry is a linear transformation T such 

that  ǁTxǁ = ǁxǁ for all x ϵ H. An isometry is a 

distance preserving transformation such that 

if 

 ǁTx - Tyǁ  = if ǁx - yǁ for all x and y.  

Definition 2.9 ([9], Problem 134) The polar 

decomposition of A ϵ B(H) is defined by A 

= UP, where U  is a partial isometry, P  is a 

positive operator and kerU = kerP.  

Definition 2.10 ([19], Definition 5.3) If H = 

M  N, then a projection is a linear map P : 
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H  H taking X onto M along N defined by 

Px = y, where x = y + z with y ϵ M and z ϵ N 

such that M = ranP and N = kerP. 

Results and discussion  

In this section, we give the main results. First we 

establish properties of derivations implemented 

by finite rank hyponormal operators and then we 

establish range-kernel orthogonality of finite 

rank inner derivations implemented by 

hyponormal operators.  

Proposition 3.1 Let δA : FH (H) → FH (H) 

defined by δA(X) = AX − XA be of finite 

rank.  

Then δA is a derivation and δA= δB if and 

only if B = A − λI for all λ ∈  and B ∈ FH 

(H). 

Proof. From the definition we have; (XY) = 

AXY – XYA            (1) 

(XY) = BXY – XYB            (2) 

Subtracting (2) from (1) we have; (XY) - 

(XY) = AXY – BXY- XYA + XYB 

 - (XY) = (A – B)XY – XY(A – B) 

 - (XY)  = (XY) 

 -   =  which is a derivation 

according to [20] 

According to [16] the converse is true i.e. if δ is 

a derivation in  then there exist  

A ϵ   such that δ =  ([16], 

Proposition1.4.4). 

For the second part, suppose for A, B ϵ  we 

have   =   then this implies  -  =  

= 0. Hence for all X ϵ   we have; (X)= 

(A –B)X – X(A- B) = 0  

 (A – B)X = X(A – B). Setting A- B = C we 

have CX = XC implying C = λI [16],  

thus A – B = λI  B = A – λI. 

On the other hand, if B = A – λI then by 

applying derivation on both sides we have; 

(X) =  (X) 

 BX – XB = (A – λI)X – X(A – λI) 

 BX – XB = AX – λX – XA + Xλ 

 BX – XB = AX – XA  

  = . 

Proposition 3.2 Let δA : FH (H) → FH (H) 

defined by δA(X) = AX − XA be of finite 

rank. Then δA(X) = AX – XA is linear and 

bounded. 

Proof. For linearity, let X, Y ϵ  then for 

scalars  ϵ  we have; 

(  = A(  + Y) - (  + Y)A = 

 -  +  - YA 

=  –  +  – YA) 

= (X) + (Y). Hence  is linear. 

By [8] a derivation is a linear map δ : FH (H) 

→ FH (H) satisfying the Leibniz  

rule; δ(XY) = δ(X)Y + Xδ(Y) and by [16] if 

δ : FH (H) → FH (H) is a derivation,  

then there exist A ϵ FH (H) such that δ = . 

Thus (XY) = (X)Y + X (Y) 

 (XY) = (AX - XA)Y + X(AY - YA).  

But A is finite implying existence of I ϵ FH 

(H) such that AX – XA - I   I and AY – 

XY - I   I and hence from line (1) we 

have; 

 (XY) ≤ AX – XA - I Y  + ǁXǁǁAY – 

YA - Iǁ.  

  (XY) ≤ Y  + ǁXǁ.  

Thus there exist a positive integer n ϵ  such 

that  (XY) ≤  n.  

Proposition 3.3 Let δA : FH (H) → FH (H) 

defined by δA(X) = AX − XA be of finite 

rank. Then  =  and R(  =[   

if and only if A = . 

Proof. We use definition of inner product 

trace;   = tr (AB
*
) then for all X, Y ϵ 

 we have;  =    

=  tr{X(AY – YA)
*
}  

= tr{XY
*
A

* 
- XA

*
Y

*
}      (1) 

Also    =  = tr{ 

A
*
XY

*
 - XA

*
Y

*
}           (2) 

By definition trace is sum of entries on main 

diagonal of matrices, hence line (1) is equal 

to line (2) and indeed; tr{XY
*
A

*
 - XA

*
Y

*
} = 

tr{ A
*
XY

*
 - XA

*
Y

*
}  = 0 

  =        (3) 

On the second part we use properties of 

adjoint operator.  

Suppose A = A
*
 then for an arbitrary x ϵ 

R(  there is a y ϵ FH (H) such that x = 

(y).  

Now for any z ϵ ker(  and by the 

previous result we have;  

  =  =   = 

 =  = 0. 

This implies x ϵ { .  

But x ϵ R(  is arbitrary, implying R(   

{                              (4) 

On the other hand, let x ϵ , then for 

all y ϵ FH (H) we have; 
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0 =  =       x = 

x = 0.  

Hence x ϵ {     

{  

By taking orthogonal complement on both sides 

we have; 

 {    =   = R(   

{  R(            (5) 

Comparing (4) and (5) we have R(  = 

{      (6) 

But also ker(  =  = . Then from (6) 

we have R(  =   

Suppose R(  =  then we show that A = 

. 

But also from [16] we have; R(   = 

{   

Taking orthogonal complement both sides we 

have;  = ker  

Taking orthogonal complement both sides again 

we have;  =  

  =   

Then H =        [17]  

  is a projection and thus self adjoint   [19] 

 =            (8) 

But also from line (3) we have  =       

(7) 

From (7) and (8) we have  =   A =              

Lemma 3.4 Let A, X ϵ FH (H), T ϵ  and 

. If A is contractive and if ǁAX – XA - Tǁ  

  then ǁ X – X  – (n+1) Tǁ  

. 

 

Proof. By [9] generalization formula for 

derivation where C is substituted by AX – XA 

we have;  

X – X  –n T = ((AX –XA) –

T)            (1) 

For n =1 we have; AX –XA –T = AX – XA –T 

For n = 2 we have; X - X  - 2AT = ((AX – 

XA) –T)A + ((AX – XA) –T)A 

  X - X  - 2AT = 2((AX – XA) –T)A 

X - X  - 2ATǁ  2ǁ(AX – XA) –TǁǁAǁ = 

2  

Similarly for n = 3 we have;  X - X  - 

3 T = A((AX – XA) –T)A + ((AX – XA) –

T)  + ((AX – XA) –T)  

 X - X  - 3 Tǁ  3ǁ(AX – XA) –Tǁǁ ǁ = 

3  

For an arbitrary n ϵ  we have; X - X  - 

n Tǁ =  n  

Hence for n + 1 we have X - X  – 

(n Tǁ =  (n . 

Lemma 3.5 For  let A, B ϵ FH (H), be 

hyponormal operators such that A is  

contractive. Suppose there exist T ϵ FH (H) such 

that AT = TB and ǁAX – XB - Tǁ   then  

for every n ϵ  and for all X ϵ FH(H) we have 

ǁ X – X  – (n+1) Tǁ  . 

Proof. Equality (1) above can be written as X 

– X  –n T = ((AX –XB) –T)   

For n = 1 we have;   AX –XB –T = AX – XB –T 

For n = 2 we have; X - X  - 2AT = ((AX – 

XB) –T)A + ((AX – XB) –T)A 

X - X  - 2ATǁ  2ǁ(AX – XB) –TǁǁAǁ = 

2  

Similarly for n = 3 we have; X - X  - 3 Tǁ 

 3  

For arbitrary n ϵ  we have; X - X  - 

n Tǁ ≤ n  

Hence for n + 1 we have; X - X  – 

(n Tǁ ≤ (n . 

Lemma 3.6 Let A ϵ FH (H), then the following 

are equivalent; 

(i) I ϵ  

(ii) There exist T ϵ  such that T ϵ  

(iii)  contains all positive invertible 

hyponormal operators in  

(iv)  = FH (H). 

Proof. i)  ii) Suppose I ϵ  then also I ϵ 

 implying existence of an invertible  

operator T ϵ FH (H) such that T  = T = I ϵ 

. Then by lemma 3.3  in [4] we have a  

polynomial P of degree n such that  – 

 (A)   I 

where P 
k
 is the k

th
 derivative of P and (Xn) 

is a sequence of operators of FH (H) 

⇒ P 
k
(A)Xn − XnP 

k
(A) → P 

k+1
(A)T T 

−1
 

Multiplying each term from the right by T we 

have 

P 
k
(A)XnT − XnP 

k
(A)T → P 

k+1
(A)T T 

−1
T 

By polynomial properties we have, P (A)XnT − 

XnP (A)T → P 
1
(A)T. 

⇒ P (A)XnT − T XnP (A) → P 
1
(A)T 

⇒ T ∈ {A}
♯
.        

Also I ϵ  implying existence of a sequence 

of operators (Xn) such that AXn − XnA → I  

and since A is finite hyponormal operator we 

have ∥AXn − XnA − I∥ ≥ ∥I∥ implying existence  

of an invertible operator T ∈ FH (H) such that 

∥AXn − XnA − T T 
−1∥ ≥ ∥T T 

−1∥ 
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⇒ ∥AXn − XnA − T ∥∥T 
−1∥ ≥ ∥T ∥∥T 

−1∥ 

⇒ ∥AXn − XnA − T ∥ ≥ ∥T ∥ 

⇒ T ∈ . 

ii)  i) Suppose there exist an operator P such 

that P ϵ   {A}
♯
.     Then there exist a  

sequence of operators {  of  such that ǁP – 

(A  - A)ǁ  0 as setting n  0. 

Setting  =  we have; ∥P 
−1

P −P 
−1

(AXn−XnA)∥ = ∥I−(AP 
−1

Xn−P 
−1

XnA)∥ =  

∥I−(ATn−TnA)∥ and since P ϵ  implies that 

 ϵ  we have; ∥I − (ATn − TnA)∥ = ∥I − (P 
−1

AXn − P 
−1

XnA)∥ 

= ∥P 
−1

(P − (AXn − XnA))∥ ≤ ∥P 
−1∥∥P − (AXn − 

XnA)∥. 
Since ∥P − (AXn − XnA)∥ → 0 as n → ∞ it 

follows that ∥I − (ATn − TnA)∥ → 0 as n ∞ 

and  

hence I ∈ . 

 iii) If I ∈ , then there exist a 

sequence (  of operators of FH (H) such that  

∥I − (AXn − XnA)∥ → 0 as n ∞ and also since 

I ∈  then for every invertible operator  

B ∈  there exists  ∈  such that I 

= B  and hence 

∥I − (AXn − XnA)∥ = ∥ B − (AXn − XnA)∥ 

ǁ ǁǁB - (AXn − XnA)∥ 

 ǁB - (AXn − XnA)∥  0 as n  ∞ which 

implies that (A  - A)  B ∈ ,  by 

definition and by setting ( )  B as n  ∞ we 

have BA = AB for an arbitrary positive 

invertible hyponormal operator B ϵ .  

iii)  iv) Let B ∈ FH (H) then by definition  

= { B ∈ FH (H) : AB = BA} for all A ∈ FH (H). 

Implying that FH (H)   then by iii) we have 

FH (H)   and hence A ∈ FH (H)  . 

On the other hand, let X ∈  then we need 

to show that X ∈ FH (H). Let B ϵ  be a 

positive invertible hyponormal operators such 

that by iii) we have B ∈  then there exist a 

sequence ( ) such that AXn − XnA  B  ǁB 

- (AXn − XnA)∥  0 as n  ∞ and by the 

vanishing properties of all operators in  we 

have AXn = XnA as n  ∞ and by setting (Xn) 

 X as n  ∞ then AXn = XnA becomes AX = 

XA implying that  X ∈ FH (H) hence  = FH 

(H).  

At this point, we establish range-kernel 

orthogonality of finite rank inner derivation 

implemented by hyponormal operators. 

Theorem 3.7 

Let A ϵ  be hyponormal operator. Suppose 

there exist a T ϵ  such that T ϵ  then for 

all X ϵ  we have ǁT – (AX – XA)ǁ  ǁTǁ for 

all T ϵ ker . 

Proof. Equality (1) can be written as; 

 X – X   + (T - (AX –XA) )  = 

n T   

For n = 1, we have AX – XA + T – (AX – XA) = 

T 

ǁ AX – XAǁ + ǁT – (AX – XA)ǁ ≥ ǁTǁ 

For n = 2 we have X – X  + 2(T – (AX – 

XA))A = 2AT 

ǁ X – X  ǁ + 2ǁAǁǁT – (AX – XA)ǁ ≥ ǁTǁ 

  + ǁT – (AX – XA)ǁ  ǁTǁ 

 Similarly for n = 3 we have  + ǁT – 

(AX – XA)ǁ  ǁTǁ 

Taking n  ∞ we have ǁT – (AX – XA)ǁ  ǁTǁ. 

Theorem 3.8 

Let A ϵ  be an invertible finite rank 

hyponormal operator such that ǁ  =    

where n ϵ . If I ϵ  then for all X ϵ  we 

have ǁT – (AX – XA)ǁ  ǁTǁ for all T ϵ  

ker . 

Proof. Since I ϵ  then by Lemma 3.6 there 

exist T ∈  such that the equality 

X – X   + (T - (AX –XA) )  

=n holds. 

We multiply each term from the right by  

 

X  – X   + (T - (AX –

XA) )  =n  

Which becomes X  – XA  + 

(T - (AX –XA) )  = Nt 

ǁ ǁǁXǁǁ ǁ +ǁXǁǁAǁ + ǁǁ T - 

(AX –XA)ǁǁ ǁ  nǁTǁ 

2ǁXǁ +    nǁTǁ 

ǁXǁ +    ǁTǁ 

ǁXǁ + ǁ T - (AX –XA)ǁ   ǁTǁ 

Taking n  ∞ we have ǁ T - (AX –XA)ǁ   ǁTǁ. 

Theorem 3.9 ([2], Theorem 5). Let T  ϵ  be 

hyponormal operator such that  = N where n 

is a positive integer. If N  is a normal operator, 

then T is also normal. 

Theorem 3.10 Let A ϵ  be hyponormal 

operator. Suppose there exist a unitary operator 

U such that for some positive integer n ϵ ,  = 
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U. Then for all X ϵ  we have ǁT – (AX – 

XA)ǁ  ǁTǁ for all T ϵ ker . 

Proof. By definition U is normal and hence A is 

also normal by the above theorem.  

Let A =  be the matrix representation 

of A relative to the orthogonal decomposition   

 

H =  =   .  

Taking matrix representation of X and T on H as 

X =  and T = . 

Then AX – XA – T = 

  

Since the norm of an operator matrix 

supersedes/dorminates the norm of its diagonal 

entry we have; 

ǁ AX – XA – Tǁ  ǁ ǁ  ǁ ǁ  

ǁT  

 ǁ AX – XA – Tǁ   ǁT . 

Conclusions 

The properties we have established are on inner 

derivation and the respective range-kernel 

orthogonality on an algebra of finite rank 

hyponormal operators acting on an infinite 

dimensional Hilbert space. We have established 

and characterized properties of operators in 

  which forms a very important tool in 

establishing properties of operators in   

 which in turn guarantees range-kernel 

orthogonality. By polar decomposition and (FP) 

property it is interesting to investigate 

hyponormal operators with an aim of 

establishing orthogonality for hyponormal 

operators in Schatten p-class. 
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