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Abstract

In the present work, authors established derivation properties and range-kernel orthogonality of finite
rank inner derivations implemented by finite rank hyponormal operators. The results show that an inner
derivation is linear and bounded. Also by inner product trace and properties of adjoint, the inner
derivation is self-adjoint if the inducing operator is self-adjoint. For orthogonality, we employ operator
techniques such as properties of operators and derivation inequalities due to Anderson, Bouali, Maher,
Mecheri and Halmos generalization formula to establish the orthogonality.
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Introduction

As an area of research, derivation properties and
range-kernel orthogonality has attracted many
mathematicians. For instance [1] introduced the
notion of orthogonality in Banach spaces which
generalizes the usual orthogonality in Hilbert
spaces while as [2, 3] established operator norm
for inner derivations. In [4] they characterized
inner derivation with orthogonality and for
normal operators established  orthogonality
inequality; IAX — XA + Tl = ITI for all X € B(H)
which implies range-kernel orthogonality for
inner derivation. Here orthogonality is defined in
[5] sense where x € H is said to be B-orthogonal
to y € H if Ix + Ayl > IxI. In normed spaces [6, 7,
8] established that Birkhoff orthogonality
implies best approximation and best best
approximation implies Birkhoff orthogonality
and thus the significance of this sense of
orthogonality [9,10].

With respect to von Neumann Schatten
p-class, C,, [11] has established range-kernel
orthogonality inequality; IAX — XA + Tl, = ITl,
for all X € B(H) and for a normal operator A €
B(H) which commutes with T € C,. In the
context of the structure of a compact vector
space and Hilbert-Schmidt norm, Range
properties of derivation have been established by

[12]. Furthermore it has been established that a
derivation in B(H) is also an inner derivation.
This is the case only in finite dimension where
the properties of adjoint operators are also
inherited by inner derivation. However an inner
derivation is also a derivation in general [13].
Operators in R(5,) are significant and they have
been used by [14] to establish operators in R(5,)
N {A} to be nilpotent if P(A) is normal,
isometric or co-isometric for some polynomial P.
Also if A € B(H) is subnormal and has a cyclic
vector or if is isometric, then R(8,) N {A*}* =
{0}.

Hyponormal operator is a generalization of many
other classes of operators such as finite, normal
and log-hyponormal operators. Range-kernel
orthogonality conditions for such large class of
operators have been established by minimization
procedures. For instance for hyponormal
operator A € B(H) such that AT = TA where T
IS an isometry, then in [15] we have IT + AX —
XA | = ITI for all X € B(H). The inequality still
holds if X  is hyponormal operator which
commutes with an isometric operator, T. By
using the power norm equality and by
compactness properties of hyponormal operators,
[16] established approximation results for
paranormal operators which in turn has been
used to establish orthogonality.

Received: 13.08.2019; Received after Revision: 24.08.2019; Accepted: 24.08.2019; Published: 30.09.2019
©2019 The Authors. Published by G. J. Publications under the CC BY license. 59


mailto:bnyaare@yahoo.com

Kaunda el al., 2019.

To establish the required result we use
orthogonality inequalities due to [17, 18, 19]
and in [20] for normal operators, orthogonal
decomposition, algebraic direct sum of
operators, algebraic properties of projections and
adjoint operators, matrix decomposition of
operators, computational skills and techniques to
establish range-kernel orthogonality inequalities
for finite rank hyponormal operators. We take

F]':{Hj to denote the algebra of all finite rank

hyponormal operators acting on an infinite
dimensional Hilbert space H, R(&4) to be range
of inner derivation and its corresponding closure

as R(8,), {A})® the commutator of A € F]':Im and
kerd, the kernel of inner derivation [21].
Research methodology

Preliminaries

In this section, we start by defining some key
terms that are used in the present work.
Definition 2.1 ([13], Definition 1.2.26) The rank
of operator A is the dimension of its range. A
finite rank operator is a bounded linear operator
between Banach spaces whose range is of finite
dimension.

Definition 2.2 ([10], Definition 2.1)
Orthogonalities:

Let X, y € H be vectors then; (i). x is
orthogonal to y writtenas x Ly, if {xy) =0
(it). x is Birkhoff orthogonal to y denoted as
X 1g Y if |x + Ay]|| > ||x]| for all A € C.

(iii). x is Roberts orthogonal to y denoted as
X 1R Yif||x +dy|| =|x-Ay| forall A € C.
iv). X is isosceles orthogonal to y denoted as
X Liyif[x+yl=[x-yl

v). X is James orthogonal to y denoted as X
Loyifly+2x|| > |IX|| forall A e C.

vi). x is Singer orthogonal to y denoted as x
L.yifx=0andy=0.

Definition 2.3 ([1], Definition 1.3.3) The
orthogonal complement A+ of a subset A is

the set of vectors orthogonal to A i.e At =X

eH:x Lyforally € A. Subsets A and B of

H are orthogonal writtenas A L Bifx Ly
foreveryx e Aandy € B.

Derivation properties of finite rank operators

Definition 2.4 ([18], Theorem 4) Let B(H)

be the algebra of all bounded linear
operators acting on Hilbert space H. The
mapping &4 : B(H) — B(H) is called an
inner derivation defined as &,4(X) =AX —
XA.

Definition 2.5 ([15], Definition 4.5) Let H

be a Hilbert space and B(H) be equipped
with the operator norm. The operator &,
defined on the Banach space B(H) is
equipped with the operator norm 15,XI =
sup{I&4 Xl : IXI= 1} for all X € B(H).

Definition 2.6 ([4], Section 2) Let T € B(H) be
compact. Then s; (T)=sy(T)=...=0 are the
singular values of T i.e the eigenvalues of lITll=

(T* T)i counted according to multiplicity and
arranged in descending order. For 1= p = oo, Cp=
Cp (H)is the set of those compact T € B(H) with

finite p-norm, ITl= (ZZ,s(TF)? =

(tr|T|")P < oo,

Definition 2.7 ([17], Definition 12.11) If T
is an operator on Hilbert space H and T is
the respective adjoint then:

i) Tisnormal if TT =T'T

ii) T is self adjoint or Hermitian if T= T~

i) Tisunitary if TT =1=T'T

iv) T is idempotent if T2=T

v) Tis nilpotent if T" =0 for alln ¢ M

vi) Tis a projection if T’ =Tand T =T

vii) T is binormal if (TT)YTT) =
(TT)TT)

viii) T is hyponormal if TT <T'T

ix) T is semi-normal if TT < T Tor TT >
T'Ti.e. either Tor T is hyponormal.

x) T is quasinormal if it commutes with T'T
e T(TT) =TT

xi) T is normaloid if ITI = r(T) where r(T) is
the specral radius of T.

Definition 2.8 ([9], Problem 127) An
isometry is a linear transformation T such
that ITxI = Ixl for all x € H. An isometry is a
distance preserving transformation such that
if

ITx - Tyl =ifIx - yl for all x and y.
Definition 2.9 ([9], Problem 134) The polar
decomposition of A € B(H) is defined by A
= UP, where U is a partial isometry, P is a
positive operator and kerU = kerP.
Definition 2.10 ([19], Definition 5.3) If H =
M & N, then a projection is a linear map P :
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H — H taking X onto M along N defined by
Px=y,wherex=y+zwithyeMandzeN
such that M =ranP and N = kerP.

Results and discussion

In this section, we give the main results. First we
establish properties of derivations implemented
by finite rank hyponormal operators and then we
establish range-kernel orthogonality of finite
rank inner derivations implemented by
hyponormal operators.

Proposition 3.1 Let da : Fy (H) — Fy (H)
defined by 0a(X) = AX — XA be of finite
rank.

Then 64 is a derivation and 5= 6g if and
onlyif B=A — Al forallA € Tand B € Fy
(H).

Proof. From the definition we have; &4 (XY) =
AXY — XYA Q)

82(XY) = BXY - XYB (2)

Subtracting (2) from (1) we have; &4(XY) -
8z (XY) = AXY - BXY- XYA + XYB

= (6, - 55)(XY) = (A -B)XY - XY(A-B)
= (84 - 85)(XY) = 8,4_g(XY)

=8, - 8 = &4_g which is a derivation
according to [20]

According to [16] the converse is true i.e. if & is

a derivation in F]':{m then there exist
A e EJY such that & = &, ([16],

H
Propositionl.4.4).

For the second part, suppose for A, B € F'}‘ImI we
have &, = &g then this implies &, - 65 = 6,4_5
= 0. Hence for all X € F]':Im we have; &,_g(X)=
(A-B)X — X(A-B) =0

= (A — B)X = X(A - B). Setting A- B = C we
have CX = XC implying C = Al [16],

thus A-B=A=B=A-AL

On the other hand, if B = A — Al then by
applying derivation on both sides we have;

65 (X) = 84— u(X)

= BX — XB = (A - AD)X — X(A — Al

= BX - XB=AX -AX - XA + X\

= BX-XB=AX-XA

= 85 = §,.

Proposition 3.2 Let da : Fy (H) — Fy (H)
defined by 0a(X) = AX — XA be of finite
rank. Then 0a(X) = AX — XA is linear and
bounded.

Proof. For linearity, let X, Y € F'}‘Im then for
scalars o, B € T we have;

Derivation properties of finite rank operators

Sa(eX + BY) = A(eX + BY) - (aX + BY)A =
aAX - aXA + BAY - BYA

= a(AX — XA) + B(AY - YA)

= ady (X) + B4 (Y). Hence & is linear.

By [8] a derivation is a linear map & : Fy (H)
— Fy (H) satisfying the Leibniz

rule; 3(XY) = §(X)Y + X&(Y) and by [16] if
6 : Fy (H) — Fy (H) is a derivation,

then there exist A € Fy (H) such that 6 = &,.
Thus 84 (XY) = 8, (X)Y + X84 (Y)

= 5, (XY) = (AX - XA)Y + X(AY - YA).
But A is finite implying existence of | € Fy
(H) such that IAX — XA - lll = I and IIAY —
XY - 1l = 1 and hence from line (1) we
have;

I 6, (XY) I IAX — XA - HIY I + IXHAY —
YA -1

= | 54 (XY) IS YN + IXI.

Thus there exist a positive integer n €M such
that | 64 (XY) I < n.

Proposition 3.3 Let 64 : Fy (H) — Fy (H)
defined by da(X) = AX — XA be of finite
rank. Then (8,)* = 84+ and R(8,) =[{A}* ]~
ifand only if A = A",

Proof. We use definition of inner product
trace; {A,B) = tr (AB") then for all X, Y €

F. we have; ((8,)'X.Y) = (X.5,Y)
= tr{X(AY - YA)'}

=tr{XY'A"-XAY?} ()

Also (54X Y) = (A'X- XA Y) = tr{
AXY - XAY} )

By definition trace is sum of entries on main
diagonal of matrices, hence line (1) is equal
to line (2) and indeed; tr{XY A" - XA'Y'} =
tr{ AXY -XAY} =0

= (84)" =84  (3)

On the second part we use properties of
adjoint operator.

Suppose A = A" then for an arbitrary x €
R(&4) there is a y € Fy (H) such that x =
Sa(y).

Now for any z € ker(84)" and by the
previous result we have;

(xz) = (84(¥), 2z} = (7 (84)°z) =
(¥.84°2)={y.8,2)=0,

This implies x € {ker(&4+)}".

But x € R(6,) is arbitrary, implying R(84) ©
{ker(8,-)} (4)

On the other hand, let x € {R(5,)}", then for
all y € Fy (H) we have;
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0= (8u(¥), x) =ly.8ox) = (84)x =
(84)x =0.
Hence x e {ker(8,-)} = {R(8,)} <
{ker(8,-)}

By taking orthogonal complement on both sides
we have;

{ker(84)} = {R(84)} " =R(8,) =R(84) =
{ker(84+)} € R(84) ®)

Comparing (4) and (5) we have R(8,) =
{ker(8,-)}  (6)

But also ker(8,)" = {A*}* = {A}". Then from (6)
we have R(8,) = [{A}¥]*

Suppose R(8,) = [{A}*]* then we show that A =
AF,

But also from [16] we have; R(&,) =
{ker(8,+)}

Taking orthogonal complement both sides we
have; {R(&,4)} =ker(&,)’

Taking orthogonal complement both sides again
we have; {R(8,)}~ = {ker(5,)°}"

= R(8,) = {ker(5,)"}"

Then H = R(5,) & {ker(5,)"} [17]

= 8, is a projection and thus self adjoint [19]
= (84)" =84 8

But also from line (3) we have (&4)" = &4-
(7

From (7) and (8) we have &, =&+ = A= A
Lemma 3.4 Let A, X € Fy (H), T € {A}" and
oo = 0. If A is contractive and if IAX — XA - TI
< o then I(A""1X — XA™1) — (n+1)A"TI <
(n+ 1)a

Proof. By [9] generalization formula for
derivation where C is substituted by AX — XA
we have;

ATX - XA" nAPTIT = ER AT ((AX —XA) —
T)A' (1)

For n =1 we have; AX —XA -T = AX - XA -T
For n = 2 we have; A*X - XA® - 2AT = ((AX —
XA) -T)A + (AX - XA) -T)A

= A*X - XA - 2AT = 2((AX — XA) -TA

= IA*X - XA? - 2ATI < 2I(AX — XA) —TIIAl =
2a

Similarly for n = 3 we have; = A*X - XA? -
3A°T = A((AX — XA) -T)A + ((AX — XA) —
T)A® + ((AX — XA) -T)A*

IATX - XA® - 3A7TI = 3I(AX — XA) —TIIA*| =
3a

For an arbitrary n € M we have; I{A"X - XA") -
nA" 1T = na

Derivation properties of finite rank operators

Hence for n + 1 we have lI(A™*1X - XA™ 1) —
(n+ 1)ATI = (n+ 1)a.
Lemma 3.5 For a« =0, let A, B € Fy (H), be
hyponormal operators such that A is
contractive. Suppose there exist T € Fy (H) such
that AT = TB and IAX — XB - Tl < a then
for every n € M and for all X € Fy(H) we have
(A" X — XB™ ) — (n+1)A"TI < (n+ 1)a.
Proof. Equality (1) above can be written as A" X
—XB" pA" T =Fn, A" H((AX —XB) -T)A'
Forn=1we have; AX-XB-T=AX-XB-T
For n = 2 we have; A*X - XB® - 2AT = ((AX —
XB) -T)A + ((AX — XB) -T)A
= IA*X - XB* - 2ATI = 2I(AX — XB) —TIIAl =
2a
Similarly for n = 3 we have; 1A*X - XB® - 3A% T
= 3o
For arbitrary n € M we have; IA"X - XB" -
NA* T < na
Hence for n + 1 we have; I1A**1X - XB=*! _
(n+ DA™ TI < (n+1)e
Lemma 3.6 Let A € Fy (H), then the following
are equivalent;

() TeR(3,)

(ii) There exist T € {A}" such that T € R(8,)

(iii) R(&4) contains all positive invertible

hyponormal operators in {A}*

(IV)R(84) = Fu (H).
Proof. i) = ii) Suppose I € R(&,) then also I €
A} implying existence of an invertible
operator T € Fy (H) such that TT ™ =T 'T=1¢
{A}*. Then by lemma 3.3 in [4] we have a
polynomial P of degree n such that PX(A)X, —
X, PE(A) — P*i(a)]
where P ¥ is the kK™ derivative of P and (X,)
is a sequence of operators of Fy (H)
= PXA)X, - X.PA) > P*HA)TT !
Multiplying each term from the right by T we
have
P K(A)X,T - X,P AT > P YA TT'T
By polynomial properties we have, P (A)X,T —
X.P (A)T — P Y(A)T.
= P (A)X,T— T X,P (A) —» P Y(A)T

= T e {AY.

Also I € R(8,) implying existence of a sequence
of operators (X;) such that AX, — XpA — 1
and since A is finite hyponormal operator we
have lIAX, — Xh,A — Il > [I1ll implying existence
of an invertible operator T € Fy (H) such that
IAX, = XA =TT =TT I
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= IAX, = XoA =T IIT =0T 1T

=S 1A =X A=TI=ITII

= T € R(5,).

i) = 1) Suppose there exist an operator P such
that P e R(5,) N {A¥’. Then there exist a

sequence of operators {X,} of F]';Im such that IP —
(AX, - X,A)l — 0 as settingn — 0.

Setting T, = P™'X, we have; [P ~'P -P
TAX XA = IIT-(AP ' X,—P ' X,A)ll =
II—(AT—TsA)ll and since P € {A}* implies that
P~ € {A}* we have; I1— (AT, — T, A)ll = I1— (P
“TAX, — P XA

= IP (P — (AXqy — XpA)I < IIP IHIP — (AX, —
XnA)Il.

Since I[P — (AXp — XpA)l — 0 as n — o it
follows that |[T — (AT, — T,A)Il — 0 as n —©
and

hence | € R(5,).

i) = iii) If | € R(8,), then there exist a
sequence (X, ) of operators of Fy (H) such that
IT— (AX, — XpA)ll — 0 as n —*o0 and also since
| € R(5,) then for every invertible operator

B € R(&,) there exists B™* € R(5,) such that |
=BB ™! and hence

IT = (AXn — XaA)ll = | BB™ — (AX; — XAl
< IB7HIB - (AX, — XnA)ll

=B - (AX, — X,A)ll — 0 as n — o which
implies that (AX, - X,A) — B € R(5,), by
definition and by setting (¥,) — B asn — o« we
have BA = AB for an arbitrary positive
invertible hyponormal operator B € {A}*.

iii) = iv) Let B € Fy (H) then by definition {A}*
={B € Fy (H) : AB = BA} for all A € Fy (H).
Implying that Fy (H) = {A}" then by iii) we have
Fu (H) € R(8,) and hence A € Fy (H) € R(5,).
On the other hand, let X € R(&,) then we need
to show that X € Fy (H). Let B € {A} be a
positive invertible hyponormal operators such
that by iii) we have B € R(8,) then there exist a
sequence (X,) such that AX, - X,A — B =IB
- (AXn — XpA)l — 0 as n — o and by the
vanishing properties of all operators in R(5,) we
have AX, = X,A as n — o and by setting (Xp)
— X as n — o then AX, = X,A becomes AX =
XA implying that X € Fy (H) hence R(8,) = Fy
(H).

At this point, we establish range-kernel
orthogonality of finite rank inner derivation
implemented by hyponormal operators.
Theorem 3.7

Derivation properties of finite rank operators

Let A € FEIH? be hyponormal operator. Suppose

there exista T € F;EIHI' such that T € {A}" then for

all X € F;:Im we have IT — (AX — XA)l = ITI for
all T € kerd,.

Proof. Equality (1) can be written as;

APX - XA® + TR APTTHT - (AX -XA) A
nA"~ 1T

Forn=1, we have AX — XA + T — (AX — XA)
T

=] AX — XAl +IT — (AX — XA)I > ITI

For n = 2 we have A*X — XA® + 2(T — (AX —
XA)A =2AT

=A% X — XA® | + 2IAlIT — (AX — XA)l > Tl

2R T - (AX - XA Z 1T
Similarly for n = 3 we have IAE}I{% + 1T —
(AX — XA)l =TI

Taking n —+ oo we have IT — (AX — XA)l = ITI.
Theorem 3.8

Let A € F]';IH be an invertible finite rank
hyponormal operator such that |A" I = JAI" < 1
where n € M. If I € R(5,) then for all X € F]EIHI' we
have IT — (AX —XA)l = ITl forall T €

kerd,.

Proof. Since I € R(8,) then by Lemma 3.6 there
exist T € {A}* such that the equality

A"X — XA" 4+ T ATTHT - (AX —XA) A
=nTA" *holds.

We multiply each term from the right by A®~*

)

ﬁnXﬁl_n B Xﬂnﬂl_l + ZF:lﬁn_l_l(T - (AX o

XA) JA AT =nTA 1 ALT?

Which becomes A"XA'™ _— XA +
:1:1An—l—1(-|- _ (AX —XA) )AHl—n = Nt

= A" IIXIAT "] +IXIAI + Z2, 1A T -

(AX —XA)Il A2 = n|TI

=2IXI+ XL, I T — (AX -XA)lIl = nlTI

= ZIXI+-X2, I T — (AX-XA)I =TI

= ZIXI+1 T - (AX -XA)l =TI

Taking n — oo we have | T - (AX -XA)l = ITI.

Theorem 3.9 ([2], Theorem 5). Let T € F]':Im be

hyponormal operator such that T® = N where n

is a positive integer. If N is a normal operator,

then T is also normal. f

Theorem 3.10 Let A € F'}‘Im be hyponormal

operator. Suppose there exist a unitary operator
U such that for some positive integer n € M, A" =

©2019 The Authors. Published by G. J. Publications under the CC BY license. 63



Kaunda el al., 2019.

U. Then for all X € Fy" we have IT — (AX —
XA)l = ITl for all T € kerd,.

Proof. By definition U is normal and hence A is
also normal by the above theorem.

— Al
LetA—(EI

of A relative to the orthogonal decomposition

0 . .
A ) be the matrix representation

H=H,=R(T)& R(T)".
Taking matrix representation of X and T on H as

X = (xi xf)and T= (Ti ﬂ).

X, X, 0 0

Then AX - XA — T =
AX, —XA —T, AX — XA,

( AX; — X3A, AKX, — K4A3)

Since the norm of an operator matrix

supersedes/dorminates the norm of its diagonal
entry we have;

IAX - XA-Tl = 1A,X, — XA — T =2IT,] =
ITl

= | AX-XA-TI =ITI.

Conclusions

The properties we have established are on inner
derivation and the respective range-kernel
orthogonality on an algebra of finite rank
hyponormal operators acting on an infinite
dimensional Hilbert space. We have established
and characterized properties of operators in
R(&,) which forms a very important tool in
establishing properties of operators in  R(&,)
n {A}® which in turn guarantees range-kernel
orthogonality. By polar decomposition and (FP)

property it is interesting to investigate
hyponormal operators with an aim of
establishing orthogonality for hyponormal

operators in Schatten p-class.
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