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Abstract

Many practical applications of Mathematics rely on results in operator theory. In this paper we focus on
the characterization of the spectrum of a hyponormal operator and the spectrum of its adjoint.
Considering an atomic quantum mechanical system, if A is an operator of an atom, then the differences
of the various eigenvalues of A are the amounts of energy emitted by the atom as it undergoes
transitions. These amounts are seen in the form of electromagnetic waves, which constitute the optical
spectrum of the report. The main objective will be finding a formal evaluation of the spectra of
hyponormals and the spectrum of its adjoint. Emphasis will also be on the resultant spectra of similar

operators to find any relationships.
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Introduction

The term spectrum arises from the
following physical considerations. If a physical
quantity (like position, momentum or energy) is
represented by an operator A, and is measured in
an experiment, then the result of the
measurement is one of the eigenvalues of A [1].
The amounts are seen in the form of
electromagnetic waves, which constitute the
optical spectrum. This accounts for such series
observed in atomic analysis such as the Balmer
series and Lyman series [2].

Throughout this paper, B(H) denotes the
algebra of all bounded linear operators acting on
a complex Hilbert space, H. An operator is said
to be an n-normal operator if T" T* = T*T";
normal if TT* = T*T (it is clear that a bounded
normal operator is an n-normal operator for any
n); self adjoint if T* = T, positive if T* = T and
(Tx, x) > 0 for all x, and semi-normal if T = T*?
- projection if T = T = T* [6]. For an operator T
€ H, if ITx|l = lIx|l for all x € H (or equivalently
T*T =1), then T is called an isometry. T is called
unitary if TT* = T*T = I. An operator T on H is

called hyponormal if TT* < T*T [4, 5, 6]. We
present a general case for bounded self-adjoint
operators [7]. This generalization is not merely a
heuristic ~ desire: infinite dimensions are
inescapable. Indeed, mathematical physics is
necessarily done in an infinite dimensional
setting. Moreover, quantum theory requires the
careful study of functions of operators on these
spaces [8]. Though it may seem abstract at first,
an example of a function of operators is
encountered with systems of linear Ordinary
Differential Equations (ODESs). Given a system
of ordinary linear differential equations of the
form x(t) = Ax(t) where A is a constant matrix,
the solution is given by x(t) = e x 0. This is an
instance of the matrix exponential, an operation
that is well defined for finite dimensions. Yet,
guantum mechanics demands that we are able to
define objects like this for any operator. In
particular, the time evolution of a quantum
mechanical state, r is expressed by conjugating
the state by exp(itH) where H is the
Hamiltonian of the system [9].

We have limited our study to the
hyponormal operators. A function f is defined to
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be a relation, such that if (x, y) € f, and (x, 2) €
f, then y = z. Four other terms that may be used
for a function are: map, mapping, operator or
transformation [10]. A function is a certain set of
ordered pairs [11], and as such it can actually be
represented graphically. If y is a function, and (x,
y) € f, then we write y = f(x). We say y is the
value of f at x, or that y is the image of x under f.
f: X — Y implies f takes elements from space X
into space Y. Now X is the domain, Y is the
range. X and Y can be topological spaces. The
operator is thus a mapping from one vector space
to another or from one module to another. An
example of a function of operators is
encountered with systems of linear ordinary
differential equations of the form Ax(t) = x(t),
where A is a constant matrix; and the solution is
given by x(t) = e x 0.

Operators can be represented by
matrices. Let H be Hilbert space, and A € B(H),
the set of bounded linear operators on H. We
focus on the self adjoint operators. An operator
A is self adjoint if, as a matrix, A = A*, where A*
denotes the conjugate transpose of A. In infinite
dimensional space, this definition does not apply
directly, but relies on the notion of an adjoint
operator in a Hilbert space [12].

Diagonalization is one of the most

important topics in linear algebra [13].
Unfortunately, it only works on finite
dimensional vector spaces, where linear

operators can be represented by finite matrices.
Eventually, one encounters infinite dimensional
vector spaces (spaces of sequences, for instance),
where linear operators can be thought of as
infinite  matrices. Extending the idea of
diagonalization to these operators requires some
new machinery [14].

Let H be a Hilbert space and A € B(H) ,
the set of bounded linear operators on H . In
particular, in this exposition, we focused on self-
adjoint operators. In finite dimensions, an
operator A is called self-adjoint if, as a matrix, A
= A*, where A* denotes the conjugate transpose
of A. In infinite dimensional space, this
definition does not apply directly. We first need
the notion of an adjoint operator in a Hilbert
space. We begin by stating a result that will be
used several times in this exposition [15].

Now, let 2 € C be such that |A] > IITIl.
Then, 3 6 € R, such that |IAll > ¢ > T |l. This
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means that ' x € H, | Tx I T lI<ll ox lI<Il Ax Il
And thus, ¥ x, 0 <|| (A\I-T)—1x lI< o0, so that A €
p(T). As mentioned, we can represent differential
operators by finite dimensional matrices to solve
ODEs. Now we will consider using the same
representations to determine the spectrum
(eigenvalues) of the operators. In short, we
approximate the spectrum of the infinite-
dimensional operator by computing the
eigenvalues of its matrix approximation. Let A €
C"™". We denote its spectrum (eigenvalues) by
o(A), i.e. 1 € o(A), if there exists v such that Av
= Av. Or the determinant vanishes; det (A — A1) =
0. Or the operator is not invertible. (This
translates to operators in Banach Spaces) [16].

Research methodology
Definition 1.1

T € B(H) is called an n-power-
hyponormal operators if T"T* < T*T" . We
observe that, this new class includes all normal,
all n-normal and all hyponormal operators. This
makes the hyponormals a fine class to use in
representing other classes of operators.

Definition 1.2

Let T € B(H). Fory € H, the map x —
(/| Tx) defines a bounded linear operator. Riesz’s
representation theorem for Hilbert spaces then
tells us that 7 z € H, such that #(x) =
&ITx) = (z|x). We now write T*(y) = z and
define the adjoint T* this way [13]. An operator
A € B(H) is said to be self-adjoint if (Ax]y) =
X|Ay) for all x, y € H , that is if A=A*
with respect to our definition of the adjoint
above [9].

Definition 1.3:

A is an eigenvalue of A if there exists
v#0, v € H such that Av = Av. Equivalently, 1 is
an eigenvalue if and only if (A — AI) is not
injective.
Remark 1.4

Several important properties of self-
adjoint operators follow directly from our
definition. First, the eigenvalues of a self-adjoint
operator, A, are real. Indeed, let Av = Av. Then
A|v) = (Av|v) = @|Av) = Ad@|v). So A = IL.
Moreover, if Av = Av, Au = uu then A@u) =
(Av|ju) = @|Au) = udu). Since A # u = u we
conclude that @|u) = 0, which tells us that the
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eigen spaces of A corresponding to different
eigenvalues are orthogonal. These two simple
facts are not only reassuring, but crucial for the
study of quantum mechanical systems. In fact,
for a quantum system, the Hamiltonian is a self-
adjoint operator whose eigenvalues correspond
to the energy levels of the bound states of the
system [2].

Definition 1.5:

The resolvent set of T, p(T) is the set of
all complex numbers A such that RA(T) :=
(AI-T) *is a bijection with a bounded inverse.
The spectrum of T, o(T) is then given by C\p(T).

Remark 1.6

In general, the spectrum of a linear
operator T is comprised of two disjoint
components:

1. The set of eigenvalues, (now called the point
spectrum).

2. The remaining part which is called the
continuous spectrum.

We also note that: a. the eigenvalues of a real
matrix need not be real numbers. For example;
the characteristic polynomial of the matrix A =

G’ _01) is x°+1 so the eigenvalues of A are the

non-real complex roots A = i and A = —i
Furthermore, the spectral radius of T is defined
by o(T*) = sup|i| : 1 € a(T). The point spectrum
and the approximate point spectrum of an
operator T are parts of the spectrum. They are
denoted by op(T) and oap(T) respectively. The
point spectrum of T is, by definition, the set of
all scalars /4 such that (T — 1) # (0). Furthermore,
oap(T) consists of all A € C for which there is a
sequence h,, n € H such that |[hyll =1 ¥nand [I(T
— )hn| — 0 as n — . Mendelson in [20]
proves an important result about the spectrum of
T, namely that: The spectrum of a bounded
linear operator is a closed and bounded subset of
C.Infact,o(T)<ze C:|z|<ITI.

Results and discussion

There are many conditions for a linear
bounded operator on a Hilbert space to be
normal [11]. Here we characterize hyponormal
operators with closed ranges. The following
lemmas are central.
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Lemma 2.1

Let M € B(H) be self adjoint and let M
have the decomposition (with respect to the
orthogonal sum of subspaces of H):

M = L‘; g] such that A has a closed range.
Then M > 0 if and only if the following hold:
. A>0;
. AA'B=B
. C-B*A'B>0.
We also need the following elementary result:

Lemma 2.2

Let A € B (H). If A and AA* + A*A
have closed ranges, then:
(AA* + A*A) (AA* + A*A)TAA* = AA* e R
(AA*) c R (AA* + A*A).

Proof:

Let M = [‘q’qi +:in ;1;1:], as Ais a
AA AA

closed range operator, so is A4*. Since AA™> 0,
AAT (AA*)IAA* = AA* and AA* + A*A —
AA*(AA*)T = A*A > 0, by lemma above. It
follows that M > 0. Further application of lemma
3.1 obtains (A4*+ A*A)AA+ A*A)AA'=
AA'is satisfied [11].

Theorem 2.3

Let A and AA* + A*A have closed
ranges. Then the following statements are
equivalent:

1. Alis hyponormal
2. 2AATAAT+ ATA)IAAT< AAT

Proof:

(1) = (2): Let A be hyponormal, i.e. A"A
> AA*. Consider the matrix M =
AAY +474 A4

AA' fAA°
Since AA4A*> 0,

LAAY(HRAAT)TIAAT = AAY) and AAT + ATA -
AA* CAA =) AL = A A - AAT > 0.

By lemma 2.1, we get that M > 0. Hence we get
that 4AA* - AA* (AA" + A*A)TAA* > 0, which
satisfies (2).

(2) = (1): Suppose that (2) holds. By lemma 2.2
we have that:

(AA* + ATA) > 0, (AA" + A'A)(AA+ A'A)?
AA'= AA* HAA- AAT (A4 + A*A)TAA> 0.

©2019 The Authors. Published by G. J. Publications under the CC BY license. 55



Wegulo el al., 2019.

And by lemma 2.1 , we conclude that the

AA" +A4TA AL
operator M = A4 144
negative. Applying lemma 2.1 to M, using
opposite blocks, we conclude that A*A > A4*, i.e
A is hyponormal.

Theorem 2.4

An operator S is said to be similar to an
operator T in case there exists an invertible
operator A such that S = A™TA. Here, all the
operators will relate to a Hilbert space H. Sheth
I. asserts by lemma that if an operator A is
similar to an operator B, the S is bounded below
if and only if B is bounded below. In other
words, if A and B are similar, then o,p(A)
=02p(B)

Proof:

iSs non-

Let A= T'BT for an invertible operator
T. Now if B is bounded below, then E*B = Al for
some constant A > 0. Since T is invertible, there
exist constants B > 0 and y > 0 such that
T*T = Bland (TT*)? = T*T! > yI. Now A*A

T*B*T* T BT = (BT)'T*'TIBT =
(BT)*'yIBT =yT* B*BT = yT* AIT =
AyT*T = AByl
i.e A is bounded below.
Since the process above is reversible, the stated
result follows. The relation oap(A) =0ap(B)
follows from the following two observations:
i. If Ais similar to B then A —zI is similar
to B -zl for all complex numbers z.
il.  Z € oap(A) iff (A — zi) is bounded below
[1].
Remark 2.5

Consider the system of first order, linear ODEs.
These can be written using matrices as y'= Ay.

We have that solutions to the linear ODEs have
the form e", hence y; = e*a and y, = e*b. Writing

in vector notation, y = e“(i ) = e¥x. Here A is

the eigenvalue and x is the eigenvector. To find a
solution of this form, we evaluate

d .
;e‘kx = tedtx. Ae’x = e¥Ax. Here A is the

differential % If there is a solution of this form,

it satisfies the equation Ae’*x =e®A4x, and
because e is never zero, we can cancel it from
both sides, and end up with the central equation
for eigenvalues and eigenvectors: Aix = Ax. A
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non-zero vector X, is an eigenvector if there is a
number A such that Ax = Ax. The scalar 1 is the
eigenvalue. Since it is true that A.0 = 4.0 for any
A, We require that an eigenvector must be a non-
zero vector, and an eigenvalue must correspond
to a non-zero vector. The scalar value 4 can
however be any real or complex number,
including zero. The equation Ax = Ax implies that
we are looking for a vector x such that x and Ax
point in the same direction. But the length can
change, and is scaled by A. The set of all such A
forms the spectrum of A. We seek to find A in the
equation Ax = Ax = Ax — Ax = 0. Thus (A — A)x
=0.

To satisfy our conditions for A, being
hyponormal, then (A — AI) must be a singular
matrix, i.e. have a determinant = 0. So to find 4,

we solve dettA — A) = 0 A — Al =

a—A b . .

( . d—,l)' The determinant is a

polynomial in A detA - A) =

2_latd)? , [2d7%¢) _ . This polynomial is the
trid) det A

characteristic polynomial. In general, an n x n
matrix would have a corresponding n™ degree
polynomial. This polynomial encodes a lot of
information: The polynomial always has n roots.
These roots can be real or complex numbers.
There are several observations that can be made
about eigenvalues:

i. The sum of the eigenvalues is equal to the sum
of diagonal entries; of the operator matrix. This
is called the trace, denoted tr(A). For an nxn
matrix, with 15, A ..An as eigenvalues, then
Jitlot. A =tr (A).

ii. The constant term (the coefficient of %) is the
determinant of A.

iii. The coefficient of A" * is the trace of A.

iv. The product of the eigenvalues is equal to the
det (A); A1.42...2n = det (A).

v. The roots of this polynomial
eigenvalues of A.

vi. The other coefficients of this polynomial are
more complicated invariants of the matrix A.

Remark 2.6

For an n x n matrix, we usually obtain n
solutions to the homogeneous system of
equations. We obtain the general solution by
taking linear combinations of these n solutions.
The complete solution for any system of two
first order ODEs has the form y =
cie'1Xi+coe’s'%, where ¢; and ¢, are constant

are the
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parameters that can be determined from initial
conditions, y; (0) and y,(0). It makes sense to
multiply by this parameter because when we
have an eigenvector, we actually have an entire
line of eigenvectors, and this line of eigenvectors
gives us a line of solutions; the spectrum.

Remark 2.7

This can be done by looking at the matrix
and its properties, particularly the diagonal,
columns, null space, relations among the
columns, trace ... SO we can construct a matrix
with prescribed eigenvalues. Here we rely on the
eigenvalue algorithm; say D = a diagonal matrix,
XDX Y, v = Xu.

Now we can look for the matrix that has
these eigenvalues and eigenvectors as its
spectrum. For a matrix obtained by similarity
relation, XAX™®. In general we place the
eigenvalues along the diagonal and put this
diagonal matrix into a similarity relation, and
this will guarantee that we have or will get the
eigenvalues that we want. So we have to choose
X properly. v = Xu. So, whatever X we choose,
the corresponding v will be the columns of the
matrix X. We need to establish if this matrix is
unique; and this will rely on the eigenvalue
decomposition of the matrix.

Theorem 2.8

If A is an n x n matrix, then the
following are equivalent:
a. A is diagonalizable.
b. A has n linearly independent eigenvectors.

Proof:

a =b Since A is assumed diagonalizable,
there is an invertible matrix P such that:

Pip 7 Pin ‘11 0 0
p=| : = "
Prpp " DPan :
A?!
APy by~ Aupyy
-'11]?]11 - - ";I'ﬂpm

If we now let p;, p2 .denote the column vectors
of P, the AP have Aipi1, A2p2 ..., AnPn as their
successive columns. Therefore Ap; = A1p1, Apz =
A2P2, ....ApPn = Anpn. Since P is invertible, p;...pn
are linearly independent. Thus A has n linearly
independent vectors. b = a Assume A has n
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linearly independent eigenvectors pi...pn, With

corresponding eigenvalues ;...4,, and let P =
Pii P2 Pin

be the matrix whose

pnl - - p]:u:t
column vectors are p;...p,. Then the product AP
= AP.,AP,, ....AP,. But AP, = AP, etc.
So that

Ay APy — APy

<ilpn1 - - flnp)

=PD,

where D is the diagonal matrix having the
eigenvalues A;...A, on the main diagonal. Thus
P~'AP = D; A is diagonalizable. The general
idea is to first diagonalize the matrix A, that is
find an invertible matrix P such that P"*AP = D
is a diagonal matrix, and A =PDP*. Squaring A
would then yield A> = (PDP*)(PDP") = PD?P!
etc.

If A is an nxn matrix, a number 4 is called an
eigenvalue of A if Ax = Ax for some x# 0. x is
called an eigenvector corresponding to the
eigenvalue . If P"*AP = D, then AP = PD. If D

= diag[/1...4n] then AP = PD becomes A[xi,
A, 0 — 0

Xo. Xl = Xt oo Xl | T
0 0 — A,
(AXllAXZ’...AXn) = (].1X11/12X2y.../1nxn)

52

=}
[
[ |
g
=B
— T
[ T
[ |
[ |

i B |

S AXy = AaXa; AXg = AXo; .y AXn = AnXn

= The diagonal entries of D are eigenvalues of
A, and the columns of P are the corresponding
eigenvectors.

Conclusions

Working through ordinary differential equations,
it is possible to determine the spectrum of
hyponormal matrices by going through matrix
operations. Also by using the diagonalization
procedure/algorithm, and working through trace
and determinants, we can find the characteristic
function, eigenvalues and eigenvectors that then
enable the evaluation of the spectrum for any
symmetric operator matrix. By a similar process,
it is also possible to establish the adjoints of
most operator matrices. Matrix operations are
important because matrices are used to
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manipulate objects, and its these manipulations
that constitute operators. Adjoints relate to
denoting a function or quantity by a particular
process of transpositions. The term “adjoint”
applies in several situations, some with similar
formalisms. If A is adjoint to B, then typically
there is some formula of the type (AX, y) = (X,
By). The adjoint of an operator A plays the role
of a complex conjugate of a complex number,
and adj(4)A=AI, from which we see
Aadj(4) = AI = “i"ﬂj: I. So in other
words, A7} =222 A =0 The eigenvectors
of A" are exactly the same as the eigenvectors of
A. The eigenvalues of A™ Are the same as the
eigenvalues of A raised to power n, and this rule
applies to all integer powers of n, both positive
and negative.
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