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Abstract 

Many practical applications of Mathematics rely on results in operator theory. In this paper we focus on 

the characterization of the spectrum of a hyponormal operator and the spectrum of its adjoint. 

Considering an atomic quantum mechanical system, if A is an operator of an atom, then the differences 

of the various eigenvalues of A are the amounts of energy emitted by the atom as it undergoes 

transitions. These amounts are seen in the form of electromagnetic waves, which constitute the optical 

spectrum of the report. The main objective will be finding a formal evaluation of the spectra of 

hyponormals and the spectrum of its adjoint. Emphasis will also be on the resultant spectra of similar 

operators to find any relationships. 
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Introduction 

The term spectrum arises from the 

following physical considerations. If a physical 

quantity (like position, momentum or energy) is 

represented by an operator A, and is measured in 

an experiment, then the result of the 

measurement is one of the eigenvalues of A [1]. 

The amounts are seen in the form of 

electromagnetic waves, which constitute the 

optical spectrum. This accounts for such series 

observed in atomic analysis such as the Balmer 

series and Lyman series [2]. 

Throughout this paper, B(H) denotes the 

algebra of all bounded linear operators acting on 

a complex Hilbert space, H. An operator is said 

to be an n-normal operator if T
n
 T* = T*T

n
;

normal if TT* = T*T (it is clear that a bounded 

normal operator is an n-normal operator for any 

n); self adjoint if T* = T; positive if T* = T and 

〈Tx, x〉 ≥ 0 for all x, and semi-normal if T
2
 = T*

2

; projection if T
2
 = T = T* [6]. For an operator T

∈ H, if ∥Tx∥ = ∥x∥ for all x ∈ H (or equivalently 

T*T = I), then T is called an isometry. T is called 

unitary if TT* = T*T = I. An operator T on H is 

called hyponormal if TT* ≤ T*T [4, 5, 6]. We 

present a general case for bounded self-adjoint 

operators [7]. This generalization is not merely a 

heuristic desire: infinite dimensions are 

inescapable. Indeed, mathematical physics is 

necessarily done in an infinite dimensional 

setting. Moreover, quantum theory requires the 

careful study of functions of operators on these 

spaces [8]. Though it may seem abstract at first, 

an example of a function of operators is 

encountered with systems of linear Ordinary 

Differential Equations (ODEs). Given a system 

of ordinary linear differential equations of the 

form x(t) = Ax(t) where A is a constant matrix, 

the solution is given by x(t) = e
tA

 × 0. This is an

instance of the matrix exponential, an operation 

that is well defined for finite dimensions. Yet, 

quantum mechanics demands that we are able to 

define objects like this for any operator. In 

particular, the time evolution of a quantum 

mechanical state, r is expressed by conjugating 

the state by ere H is the 

Hamiltonian of the system [9]. 

We have limited our study to the 

hyponormal operators. A function f is defined to 
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be a relation, such that if (x, y) ∈  f, and (x, z) ∈  

f, then y = z. Four other terms that may be used 

for a function are: map, mapping, operator or 

transformation [10]. A function is a certain set of 

ordered pairs [11], and as such it can actually be 

represented graphically. If y is a function, and (x, 

y) ∈  f, then we write y = f(x). We say y is the 

value of f at x, or that y is the image of x under f. 

f : X → Y implies f takes elements from space X 

into space Y. Now X is the domain, Y is the 

range. X and Y can be topological spaces. The 

operator is thus a mapping from one vector space 

to another or from one module to another. An 

example of a function of operators is 

encountered with systems of linear ordinary 

differential equations of the form Ax(t) = x(t), 

where A is a constant matrix; and the solution is 

given by x(t) = e
tA

 × 0. 

 Operators can be represented by 

matrices. Let H be Hilbert space, and A ∈  B(H), 

the set of bounded linear operators on H. We 

focus on the self adjoint operators. An operator 

A is self adjoint if, as a matrix, A = A*, where A* 

denotes the conjugate transpose of A. In infinite 

dimensional space, this definition does not apply 

directly, but relies on the notion of an adjoint 

operator in a Hilbert space [12]. 

 Diagonalization is one of the most 

important topics in linear algebra [13]. 

Unfortunately, it only works on finite 

dimensional vector spaces, where linear 

operators can be represented by finite matrices. 

Eventually, one encounters infinite dimensional 

vector spaces (spaces of sequences, for instance), 

where linear operators can be thought of as 

infinite matrices. Extending the idea of 

diagonalization to these operators requires some 

new machinery [14]. 

 Let H be a Hilbert space and A ∈  B(H) , 

the set of bounded linear operators on H . In 

particular, in this exposition, we focused on self-

adjoint operators. In finite dimensions, an 

operator A is called self-adjoint if, as a matrix, A 

= A*, where A* denotes the conjugate transpose 

of A. In infinite dimensional space, this 

definition does not apply directly. We first need 

the notion of an adjoint operator in a Hilbert 

space. We begin by stating a result that will be 

used several times in this exposition [15]. 

 Now, let λ ∈  C be such that |λ| > ∥T∥. 

Then, ∃  δ ∈  R, such that ∥λ∥ > δ >∥ T ∥. This 

means that ∀  x ∈  H, ∥ Tx ∥≤∥ T ∥<∥ δx ∥<∥ λx ∥; 

And thus, ∀  x, 0 <∥ (λI−T)−1x ∥< ∞, so that λ ∈  

ρ(T). As mentioned, we can represent differential 

operators by finite dimensional matrices to solve 

ODEs. Now we will consider using the same 

representations to determine the spectrum 

(eigenvalues) of the operators. In short, we 

approximate the spectrum of the infinite-

dimensional operator by computing the 

eigenvalues of its matrix approximation. Let A ∈  

C
n×n

. We denote its spectrum (eigenvalues) by 

σ(A), i.e. λ ∈  σ(A), if there exists v such that Av 

= λv. Or the determinant vanishes; det (A − λI) = 

0. Or the operator is not invertible. (This 

translates to operators in Banach Spaces) [16]. 

Research methodology 

Definition 1.1 

 T ∈ B(H) is called an n-power-

hyponormal operators if T
n
T* ≤ T*T

n 
. We 

observe that, this new class includes all normal, 

all n-normal and all hyponormal operators. This 

makes the hyponormals a fine class to use in 

representing other classes of operators. 

Definition 1.2 

 Let T ∈  B(H).  For y ∈  H , the map x → 

⟨y|Tx⟩ defines a bounded linear operator. Riesz’s 

representation theorem for Hilbert spaces then 

tells us that ∃  z ∈  H, such that             ϕ(x) = 

⟨y|Tx⟩ = ⟨z|x⟩. We now write T*(y) = z and 

define the adjoint T* this way [13]. An operator 

A ∈  B(H) is said to be self-adjoint if ⟨Ax|y⟩ = 

⟨x|Ay⟩ for all x, y ∈  H , that is if         A = A* 

with respect to our definition of the adjoint 

above [9]. 

Definition 1.3:  

 λ is an eigenvalue of A if there exists 

v≠0, v ∈  H such that Av = λv. Equivalently, λ is 

an eigenvalue if and only if (A − λI) is not 

injective.  

Remark 1.4 

 Several important properties of self-

adjoint operators follow directly from our 

definition. First, the eigenvalues of a self-adjoint 

operator, A, are real. Indeed, let Av = λv.  Then 

λ⟨v|v⟩ = ⟨Av|v⟩ = ⟨v|Av⟩ = λ⟨v|v⟩. So λ = λ. 

Moreover, if Av = λv, Au = μu then λ⟨v|u⟩ = 

⟨Av|u⟩ = ⟨v|Au⟩ = μ⟨v|u⟩.  Since λ ≠ μ = μ we 

conclude that ⟨v|u⟩ = 0, which tells us that the 
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eigen spaces of A corresponding to different 

eigenvalues are orthogonal. These two simple 

facts are not only reassuring, but crucial for the 

study of quantum mechanical systems. In fact, 

for a quantum system, the Hamiltonian is a self-

adjoint operator whose eigenvalues correspond 

to the energy levels of the bound states of the 

system [2]. 

Definition 1.5:  

 The resolvent set of T, ρ(T) is the set of 

all complex numbers λ such that  Rλ(T) := 

(λI−T)
−1 

is a bijection with a bounded inverse. 

The spectrum of T, σ(T) is then given by C\ρ(T). 

Remark 1.6 

 In general, the spectrum of a linear 

operator T is comprised of two disjoint 

components: 

1. The set of eigenvalues, (now called the point 

spectrum). 

2. The remaining part which is called the 

continuous spectrum. 

We also note that: a. the eigenvalues of a real 

matrix need not be real numbers. For example; 

the characteristic polynomial of the matrix A = 

  is x
2
+1 so the eigenvalues of A are the 

non-real complex roots λ = i and λ = −i 

Furthermore, the spectral radius of T is defined 

by σ(T*) = sup|λ| : λ ∈  σ(T). The point spectrum 

and the approximate point spectrum of an 

operator T are parts of the spectrum. They are 

denoted by σp(T) and σap(T) respectively. The 

point spectrum of T is, by definition, the set of 

all scalars λ such that (T − λ) ≠ (0). Furthermore, 

σap(T) consists of all λ ∈  C for which there is a 

sequence hn, n ∈  H such that ∥hn∥ = 1∀ n and ∥(T 

− λ)hn∥ → 0 as n → ∞. Mendelson in [20] 

proves an important result about the spectrum of 

T, namely that: The spectrum of a bounded 

linear operator is a closed and bounded subset of 

C. In fact, σ(T) ⊆ z ∈  C : |z| ≤ ∥ T ∥. 

Results and discussion 

 There are many conditions for a linear 

bounded operator on a Hilbert space to be 

normal [11]. Here we characterize hyponormal 

operators with closed ranges. The following 

lemmas are central. 

 

 

Lemma 2.1  

 Let M ∈ B(H) be self adjoint and let M 

have the decomposition (with respect to the 

orthogonal sum of subspaces of H): 

M = , such that A has a closed range. 

Then M ≥ 0 if and only if the following hold: 

I. A ≥ 0; 

II. AA
-1

B = B 

III. C – B*A
-1

B ≥ 0. 

We also need the following elementary result: 

Lemma 2.2  

 Let A ∈ B (H). If A and AA* + A*A 

have closed ranges, then:     

(AA* + A*A) (AA* + A*A)
-1

AA* = AA*, i.e. ℛ 

(AA*) ⊂ ℛ (AA* + A*A). 

Proof:  

 Let M = , as A is a 

closed range operator, so is A . Since A ≥ 0, 

A  (AA*)
-1

AA* = AA* and AA* + A*A – 

AA*(AA*)
-1

 = A*A ≥ 0, by lemma above. It 

follows that M ≥ 0. Further application of lemma 

3.1 obtains (A + A)(A + A)
-1

A = 

A is satisfied [11].  

Theorem 2.3 

 Let A and AA* + A*A have closed 

ranges. Then the following statements are 

equivalent: 

1. A is hyponormal 

2. 2A A + A)
-1

A ≤ A . 

Proof:  

 (1) ⇒ (2): Let A be hyponormal, i.e. A 

≥ A . Consider the matrix M = 

 

Since ≥ 0, 

( A  = A , and A  + A – 

A  (
-1

 A  = A – A  ≥ 0. 

By lemma 2.1, we get that M ≥ 0. Hence we get 

that ½A  - A  (A  + A)
-1

A  ≥ 0, which 

satisfies (2). 

(2) ⇒ (1): Suppose that (2) holds. By lemma 2.2 

we have that:      

(A  + A) ≥ 0, (A  + A)(A + A)
-1

 

A = A . ½A - A  (A + A)
-1

A ≥ 0. 
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And by lemma 2.1 , we conclude that the 

operator M =  is non-

negative. Applying lemma 2.1 to M, using 

opposite blocks, we conclude that A ≥ A , i.e 

A is hyponormal.  

Theorem 2.4 

 An operator S is said to be similar to an 

operator T in case there exists an invertible 

operator A such that S = A
-1

TA. Here, all the 

operators will relate to a Hilbert space H. Sheth 

I. asserts by lemma that if an operator A is 

similar to an operator B, the S is bounded below 

if and only if B is bounded below. In other 

words, if A and B are similar, then σap(A) 

=σap(B) 

Proof:  

 Let A= T
-1

BT for an invertible operator 

T. Now if B is bounded below, then B = λI for 

some constant λ > 0. Since T is invertible, there 

exist constants β > 0 and γ > 0 such that 

 and (T )
-1

 = 
-1

T
-1

 ≥ γI. Now A 

= 

 i.e A is bounded below. 

Since the process above is reversible, the stated 

result follows. The relation σap(A) =σap(B) 

follows from the following two observations: 

i. If A is similar to B then A –zI is similar 

to B –zI for all complex numbers z. 

ii. Z ∈  σap(A) iff (A – zi) is bounded below 

[1].  

Remark 2.5 

Consider the system of first order, linear ODEs. 

These can be written using matrices as y′= Ay. 

We have that solutions to the linear ODEs have 

the form e
rt
, hence y1 = e

λt
a and y2 = e

λt
b. Writing 

in vector notation, y = e
λt

 =  e
λt
x. Here λ is 

the eigenvalue and x is the eigenvector. To find a 

solution of this form, we evaluate 

. Ae
λt
x = e

λt
Ax. Here A is the 

differential  If there is a solution of this form, 

it satisfies the equation , and 

because e
λt
 is never zero, we can cancel it from 

both sides, and end up with the central equation 

for eigenvalues and eigenvectors: λx = Ax.  A 

non-zero vector x, is an eigenvector if there is a 

number λ such that Ax = λx. The scalar λ is the 

eigenvalue. Since it is true that A.0 = λ.0 for any 

λ, we require that an eigenvector must be a non-

zero vector, and an eigenvalue must correspond 

to a non-zero vector. The scalar value λ can 

however be any real or complex number, 

including zero. The equation Ax = λx implies that 

we are looking for a vector x such that x and Ax 

point in the same direction. But the length can 

change, and is scaled by λ. The set of all such λ 

forms the spectrum of A. We seek to find λ in the 

equation Ax = λx ⇒ Ax − λx = 0. Thus (A − λI)x 

= 0. 

To satisfy our conditions for A, being 

hyponormal, then (A − λI) must be a singular 

matrix, i.e. have a determinant = 0. So to find λ, 

we solve det(A − λI) = 0 A − λI = 

. The determinant is a 

polynomial in λ.  det(A − λI) = 

λ
2

.  This polynomial is the 

characteristic polynomial. In general, an n × n 

matrix would have a corresponding n
th

 degree 

polynomial. This polynomial encodes a lot of 

information: The polynomial always has n roots. 

These roots can be real or complex numbers. 

There are several observations that can be made 

about eigenvalues: 

i. The sum of the eigenvalues is equal to the sum 

of diagonal entries; of the operator matrix. This 

is called the trace, denoted tr(A). For an n×n 

matrix, with λ1, λ2 ...λn as eigenvalues, then 

λ1+λ2+...+λn = tr (A). 

ii. The constant term (the coefficient of λ
0
) is the 

determinant of A. 

iii. The coefficient of λ
n−1 

is the trace of A. 

iv. The product of the eigenvalues is equal to the 

det (A); λ1.λ2...λn = det (A). 

v. The roots of this polynomial are the 

eigenvalues of A. 

vi. The other coefficients of this polynomial are 

more complicated invariants of the matrix A. 

Remark 2.6 

 For an n × n matrix, we usually obtain n 

solutions to the homogeneous system of 

equations. We obtain the general solution by 

taking linear combinations of these n solutions. 

The complete solution for any system of two 

first order ODEs has the form y = 

c1e
λ
1

t
x1+c2e

λ
2

t
x2 where c1 and c2 are constant 
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parameters that can be determined from initial 

conditions, y1 (0) and y2(0). It makes sense to 

multiply by this parameter because when we 

have an eigenvector, we actually have an entire 

line of eigenvectors, and this line of eigenvectors 

gives us a line of solutions; the spectrum. 

Remark 2.7 

 This can be done by looking at the matrix 

and its properties, particularly the diagonal, 

columns, null space, relations among the 

columns, trace ... So we can construct a matrix 

with prescribed eigenvalues. Here we rely on the 

eigenvalue algorithm; say D = a diagonal matrix, 

XDX
−1

, ν = Xu. 

 Now we can look for the matrix that has 

these eigenvalues and eigenvectors as its 

spectrum. For a matrix obtained by similarity 

relation, XAX
−1

. In general we place the 

eigenvalues along the diagonal and put this 

diagonal matrix into a similarity relation, and 

this will guarantee that we have or will get the 

eigenvalues that we want. So we have to choose 

X properly. ν = Xu. So, whatever X we choose, 

the corresponding ν will be the columns of the 

matrix X. We need to establish if this matrix is 

unique; and this will rely on the eigenvalue 

decomposition of the matrix. 

Theorem 2.8 

 If A is an n × n matrix, then the 

following are equivalent: 

a. A is diagonalizable. 

b. A has n linearly independent eigenvectors. 

Proof:  

 a ⇒ b Since A is assumed diagonalizable, 

there is an invertible matrix P such that: 

P =  

=  

 If we now let p1, p2 ...denote the column vectors 

of P, the AP have λ1p1, λ2p2, ..., λnpn as their 

successive columns. Therefore Ap1 = λ1p1, Ap2 = 

λ2p2, ....Apn = λnpn. Since P is invertible, p1...pn 

are linearly independent. Thus A has n linearly 

independent vectors. b ⇒ a Assume A has n 

linearly independent eigenvectors p1...pn, with 

corresponding eigenvalues λ1...λn, and let P    =  

 be the matrix whose 

column vectors are p1...pn. Then the product AP 

= AP1,AP2, ....APn. But AP1 = λP1 etc. 

So that 

 = PD,  

where D is the diagonal matrix having the 

eigenvalues λ1...λn on the main diagonal. Thus 

P
−1

AP = D; A is diagonalizable. The general 

idea is to first diagonalize the matrix A, that is 

find an invertible matrix P such that P
−1

AP = D 

is a diagonal matrix, and A =PDP
−1

. Squaring A 

would then yield A
2
 = (PDP

−1
)(PDP

1
) = PD

2
P

1
 

etc.  

If A is an n×n matrix, a number λ is called an 

eigenvalue of A if Ax = λx for some x≠ 0. x is 

called an eigenvector corresponding to the 

eigenvalue λ. If P
−1

AP = D, then AP = PD. If D 

= diag[λ1...λn] then AP = PD becomes A[x1, 

x2...xn] = [x1, x2...xn]  

 (Ax1,Ax2,...Axn) = (λ1x1,λ2x2,...λnxn) 

 

∴  Ax1 = λ1x1; Ax2 = λ2x2; ...; Axn = λnxn 

⇒ The diagonal entries of D are eigenvalues of 

A, and the columns of P are the corresponding 

eigenvectors. 

Conclusions 

Working through ordinary differential equations, 

it is possible to determine the spectrum of 

hyponormal matrices by going through matrix 

operations. Also by using the diagonalization 

procedure/algorithm, and working through trace 

and determinants, we can find the characteristic 

function, eigenvalues and eigenvectors that then 

enable the evaluation of the spectrum for any 

symmetric operator matrix. By a similar process, 

it is also possible to establish the adjoints of 

most operator matrices. Matrix operations are 

important because matrices are used to 
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manipulate objects, and its these manipulations 

that constitute operators. Adjoints relate to 

denoting a function or quantity by a particular 

process of transpositions. The term “adjoint” 

applies in several situations, some with similar 

formalisms. If A is adjoint to B, then typically 

there is some formula of the type (Ax, y) = (x, 

By). The adjoint of an operator A plays the role 

of a complex conjugate of a complex number, 

and , from which we see 

. So in other 

words, . The eigenvectors 

of  are exactly the same as the eigenvectors of 

A. The eigenvalues of  Are the same as the 

eigenvalues of A raised to power n, and this rule 

applies to all integer powers of n, both positive 

and negative. 
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