International Journal of Modern Computation, Information and Communication

Transforming Science and Technology

Technology 2019;2(2):48-52.
ISSN: 2581-5954
http://ijmcict.gjpublications.com

Review Article

Challenges of Concurrency Control in Object Oriented Distributed Database
Systems

Muhammad Haroon

University of Gujrat Lahore Sub Campus, Lahore, Pakistan.

*Corresponding author’s e-mail: haroon.capricorn@gmail.com

Abstract

Concurrent data in any system defines the correctness and credibility of the system. It becomes trickier
and challenging in case of object oriented distributed database systems. Concurrency control is the area
in which we try to meet the maximum concurrency level in the system. The present review paper is
focused on the challenges one can face regarding concurrency control in object oriented distributed

database systems.

Keywords: Concurrency; Concurrency control; Distributed database; Object oriented distributed

database.
Introduction

One of the key properties of ACID
properties of database transaction is consistency
that must be preserved during all database
transactions. The data manipulated by these
transactions must be concurrent. When a system
works, more than one transaction try to
manipulate the same data that may cause ill
manipulation of data. To overcome this problem,
transactions are made serialized that in turn gives
the concept of concurrency control [1]. The
concurrency control is a methodology that keeps
data concurrent even when more than one
transaction tries to read or write same data
cluster [3]. In the case of object oriented
distributed database system, it becomes more
challenging and requires more attention to work
with it because the architecture of distributed
database system is very different from the
regular single site database. There are several
techniques to handle such type of situations.

Object oriented distributed database

Distributed database is same like a
regular centralized database but it is physically
spread across multiple geographical sites and is
connected through wired or wireless network. It
is done to boost up the transactions for local
users for that particular site [3].

< C
W Site 1 W

Communication Media

))
Site 4 W Site 3 w

Fig. 1. Architecture of distributed database

Fig. 1 demonstrate graphically the
concept of distributed database system in which
a single database is spread around five sites and
all fragments of database are connected by
communication media with each other.

Concurrency

Concurrency is actually one of the main
properties of relational database system that
allows multiple users to affect multiple
transactions at a time. This differentiates the
database from other storage modes like
traditional file systems, spreadsheets etc [4].

Consider one banking transaction
demonstrated graphically in fig. 2. Suppose
there’s a bank account with amount Rs.5000.
Two transactions T1 and T2 try to work on data

Received: 30.06.2019; Received after Revision: 13.07.2019; Accepted: 14.07.2019
©2019 The Authors. Published by G. J. Publications under the CC BY license. 48

mailto:haroon.capricorn@gmail.com

Haroon, 2019.

of bank account. Transaction T1 adds Rs.1000
and on the same time, transaction T2 withdraws
Rs.6000. These both transactions affect the same
data at the same time. In that case if transaction
T2 executes before T1, an error containing
message “Insufficient Funds” will appear but it
will be withdrawn if T1 runs before T2. In this
case, T1 must be executed first. This is done
using serialization in concurrency control.
Transactions are made serialized [6].

T1

\

Deposit 1000

o

Withdraw 6000

Bank Account

Amount = 5000

Fig. 2. Bank transactions

Transactions in distributed environment
become a little bit complex. This can be termed
as distributed transaction. In this case,
transactions can be controlled by local
transaction manager at each host computer. This
transaction manager communicates with other
host transaction to preserve concurrency control
[3,4]. These distributed transaction managers are
built to facilitate transactions to work in smooth
manner by avoiding collision or damage of data

[5].
How Concurrency can be controlled?

The correctness of data is one of the
major concerns in any system that must be
fulfilled in any case. It is said that a System’s
worth is of its data, not the system itself.
Systems where more than one transaction
executes with time overlap are most critical to be
considered. After getting maturity in 1970s,
researchers were started their research to control
the concurrency because it was the one of the
biggest concern of that time [6]. Some theories
had also been developed from which the
serializability theory became famous and
workable. According to this theory, transactions
are prioritized based upon their importance and
effect on the system to retain data integrity in the
system [7]. Serializability works on the principle
of making schedule of running transactions to

Challenges of concurrency control in object oriented distributed database systems

avoid transaction collision or data damage. In
this way, concurrency is controlled.

5. Techniques of Concurrency Control

Serializability is the technique to stop a
transaction temporarily while other transaction is
accessing some data item. There are various
methods to control the concurrency. Few are
mentioned below:

I. Distributed Two-Phase Locking Protocol
a. Multi version Two-Phase Locking
Il. Timestamp-Based Protocols

a. Multi version Timestamp
Ordering

b. Wait-Die & Wound-Wait
Algorithms

I1l. Validation-Based Protocols

Distributed two-phase locking protocol

It is the most common protocol in
relational databases. This works in two phases
I.e. growing phase and shrinking phase as shown
in fig. 3.

locks
held by
Ti

Iime

Growing Shrinking

Phase Phase

Fig. 3. Two phase locking protocol (2PL)

In first phase, locks are acquired only and
cannot be released and are released in second
phase and there is no new lock acquired in this
second phase [7].

A transaction in distributed environment
is granted a lock on a transaction if the requested
lock is suitable with another lock already held by
other transactions. More than one transaction can
hold shared locks on a transaction but if there is
any transaction that holds another lock on the
item no other transaction may hold any lock on a
transaction. If a lock cannot be acquired, the
transaction in queue is waited till all unsuitable
locks held by other transactions have been
released [7].

©2019 The Authors. Published by G. J. Publications under the CC BY license. 49

Haroon, 2019.

Table 1. Advantages and disadvantages of two
phase locking protocol

Advantages Disadvantages
Transactions are This protocol
executed with sometimes becomes

changed manner to overhead when a
ensure serializability transaction traps in a

and to avoid deadline causing

deadlock. rolling back again and
again.

It assures no conflict It does not assure the

in running occurrence of

transactions. deadlocks and
starvation.

Another variant of distributed two phase
locking is multi version two phase locking.

Multi version two-phase locking

Multi version refers to the creation of a
new version after every commit rather than to
overwrite old values. This variant of multi
version protocol maintains one or more than one
old versions of items in the database to allow
work to proceed using both the current version
and older versions [8]. In ordinary two phase
locking, all locks are hold till the end of the
transaction. Write lock on a data saves a
transaction from setting a read locks on data.
When a transaction writes into data, it creates a
new version of the data [8].

Table 2. Advantages and disadvantages of multi
version two phase locking protocol

Advantages Disadvantages

It is best for read Deadlock avoidance

only transactions. can never be
neglected.

All read requests are -
always accepted.

Timestamp-Based Protocols

Timestamp based protocols work with an
additional ‘timestamp’ parameter which is
associated to every transaction. The
prioritization of the transaction execution is
based upon the timestamp. There are two
timestamps i.e. read timestamp and write
timestamp. This is suitable in the case described
in fig.2. If the timestamp of transaction T1 is less
than transaction T2, the request is granted. In
this way the transactions are executed on the
basis of timestamps [4][9].

Challenges of concurrency control in object oriented distributed database systems

Table 3. Advantages and disadvantages of
timestamp based protocols

Advantages Disadvantages

All updates are set When a transaction

into the database after halts, it may be

the transaction rolls possible that it

back. possesses the data
held by other
transaction. In this

case, transaction
must be rolled back
[5].

Transactions Due to the halt of a
sometimes produce transaction, will be
conflict due to restarted with
reading similar kind another timestamp.
of data.

This protocol guarantees the
serializability between transactions performing
read and writes operations. The rule based on
algorithm can be written as:

Transaction T1 starts P(A) operation.
If (Write_TimeStamp > TimeStamp (T1))

Then rollback T1

Else

Execute P(A)
and set P_ TimeStamp(A) = MAX{ P_
TimeStamp (A), TimeStamp (T1)}.
Some of the variants of timestamp based
protocols are defined in following.

Multi version Timestamp Ordering

As described earlier, multi version refers
to the creation of a new version after every
commit rather than to overwrite old values.
Multi version timestamp ordering works on
FCFS (First Come First Server) basis [9]. The
transaction comes first will be treated first.
Whenever a transaction is allowed to execute a
write command, a new version of data item is
generated. A read is always executed first always
when it finds the suitable version to read based
on the write of the various existing versions of
item based on timestamp [9].

Table 4. Advantages and disadvantages of multi
version timestamp ordering

Advantages Disadvantages

In this approach, If there are conflicts in
deadlock can’t occur. transactions, these are
sorted by rollbacks

[9].

©2019 The Authors. Published by G. J. Publications under the CC BY license. 50

Haroon, 2019.

Wait-Die & Wound-Wait Algorithms

Wait-Die: When a transaction T1
requests a data held by T2, then T1 is allowed to
wait only if it has a timestamp less than T2,
otherwise T1 is rolled back [4].

e |f TimeStamp(T1) < TimeStamp (T2)

T1 is allowed to wait until the data is

available.

e If TimeStamp (T1) > TimeStamp (T2)

T1 is restarted later with some delay but

with the same timestamp.

Wound-Wait: When Transaction T1
requests a data held by T2 then T1 is allowed to
wait only if it has a timestamp larger than that of
T2, otherwise T2 is rolled back [5].

If TimeStamp (T1) < TimeStamp (T2)

T1 makes T2 to be rolled back
If TimeStamp (T1) > TimeStamp (T2)

T1 is forced to wait until the required

data is available.

Validation-based protocols

Locking mechanisms that are deadlock
free are the most favorable for us. A research
conducted in [11] suggested that there must be
another phase “validation phase” along with
write phase and read phase [11]. In this new
validation phase, it is assured that transactions
are not violating the serializability pattern.
Validation is achieved by giving each transaction
a timestamp at the end of the read phase and
synchronizing using timestamp ordering. This
produces a term optimistic concurrency control

[al.

Table 5. Advantages and disadvantages of
validation based protocol

Advantages Disadvantages
This can achieve a There is a chance
better level of of transaction
concurrency with a starvation due to
very low conflict rate. conflicting short
transactions.

Issues with techniques of concurrency control

Some issues can arise with the techniques
of concurrency control was discussed in section
5 of this paper. Some of the issues are described
here.

Challenges of concurrency control in object oriented distributed database systems

Two phase locking

Two phase locking protocol works well
for read-update applications. In this two phase
locking approach, transactions are controlled by
letting them wait at some points [12]. The major
hurdle in this locking technique is deadlock
occurrence which can be solved by using backup
and these cannot work well with query intensive
applications [12].

Timestamp ordering

The timestamp ordering protocol
guarantees serializability of transactions as
conflicting issues are fixed by timestamp order
[3,12]. As we know, no any transaction waits for
each other transaction; therefore this protocol
ensures liberty from deadlocks. There are some
chances of starvation of lengthy transactions
because the sequence of conflicting short
transactions may repeatedly have restarted [13].
There is a case when ordering is incorrect like
transaction that started later than the current
transaction has accessed the file and committed,
in this case the current transaction is late and has
to halt [13].

Multi version concurrency control

The concurrency control scheduler
usually rejects a read transaction because the
value it was required to read has already been
overwritten but with multi version concurrency
control, since these values are never overwritten
because it produces a new version with every
successful write [10].

There is a tradeoff between concurrency
control and the memory. Multi version
concurrency control increases the cost of storing
multiple versions in storage media. This storage
requirement can be managed by archiving old
versions in backup [10].

Conclusions

After all discussion we made in this paper, it is
finally concluded that the concurrency is one of
the important factor that can’t be ignored or kept
back sided. The credibility of the system is
developed with the concurrency control in the
system. Various methods to control the
concurrency have been discussed here with
advantages and disadvantages of each method. It
has also been discussed that implementation of
these methods becomes more challenging with

©2019 The Authors. Published by G. J. Publications under the CC BY license. 51

Haroon, 2019.

object oriented distributed database systems. But
still the under discussion methods are enough to
meet a handsome level of concurrency.

Conflicts of interest

Authors declare no conflict of interest.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Korth HF, Silberchatz A, Sudarshan S.
Concurrency Control: Database System
Concepts (4™ Edition), Bell Laboratories,
USA. 2001. pp. 591-617.

Su C, Crooks N, Ding C, Alvisi L, Xie C.
Bringing Modular Concurrency Control To
The Next Level. In Proceedings Of The
2017 Acm International Conference On
Management Of Data, Sigmod Conference
2017, Chicago, Il, USA, May 14-19,
2017;283-97.

Zamanian E, Binnig C, Harris T, Kraska T.
The End Of A Myth: Distributed
Transactions Can Scale. Proceedings of the
VLDB Endowment 2017;10(6):685-96.
Curino C, Zhang Y, Jones EPC, Madden,
S. Schism: A Workload-Driven Approach
To Database Replication And Partitioning.
Proceedings of the VLDB Endowment
2010;3:48-57.

Zheng W, Tu S, Kohler E, Liskov B. Fast
Databases With Fast Durability And
Recovery Through Multicore Parallelism.
In 11th Usenix Symposium On Operating
Systems Design And Implementation, Osdi
’14, Broomfield, Co, USA, 2014;465-477.
Jitendra S, Gupta VK. Concurrency Issues
of Distributed Advance Transaction
Process. Research Journal of Recent
Sciences 2012;1:426-29.

Tatarowicz A, Curino C, Jones EPC,
Madden S. Lookup Tables: Fine-Grained
Partitioning For Distributed Databases. In
leee 28th International Conference On
Data Engineering (ICDE 2012),

[8]

[9]

[10]

[11]

[12]

[13]

*khkhkhkhkk

Challenges of concurrency control in object oriented distributed database systems

Washington, DC, USA (Arlington,
Virginia), 1-5 April, 2012:102-113.
Christos H. Papadimitriou: A Theorem In
Database Concurrency Control. Journal Of
The. Association for ~ Computing
Machinery 1982;29:998-1006.

Kimura, H. Foedus: Oltp Engine For A
Thousand Cores And Nvram. In
Proceedings Of The 2015 ACM Sigmod
International Conference On Management
Of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015:691-706.

Kim K, Wang T, Johnson R, Pandis I.
Ermia: Fast Memory-Optimized Database
System for Heterogeneous Workloads. In
Proceedings of The 2016 International
Conference on Management of Data,
Sigmod Conference 2016, San Francisco,
CA, USA, June 26-July 01, 2016;675-87.
Diaconu C, Freedman C, Ismert E, Larson,
P, Mittal P, Stonecipher R, Verma N,
Zwilling M. Hekaton: Sqgl Server’s
Memory-Optimized Oltp Engine. In
Proceedings Of The ACM Sigmod
International Conference on Management
of Data, Sigmod 2013, New York, NY,
USA, June 22-27, 2013;1243-1254.
Didona D, Diegues N, Kermarrec A,
Guerraoui R, Neves R, Romano P.
Proteustm: Abstraction Meets Performance
in Transactional Memory. In Proceedings
of The Twenty-First International
Conference on Architectural Support for
Programming Languages and Operating
Systems, Asplos ’16, Atlanta, GA, USA,
April 2-6, 2016;757-71.

Shang Z, Li F, Yu JX, Zhang Z, Cheng H.
Graph Analytics Through Fine-Grained
Parallelism. In Proceedings of The 2016
International Conference on Management
Of Data, Sigmod Conference 2016, San
Francisco, CA, USA, June 26-July 01,
2016;463-78.

©2019 The Authors. Published by G. J. Publications under the CC BY license. 52

