
International Journal of Modern Computation, Information and Communication

Technology 2019;2(2):48-52.

ISSN: 2581-5954

http://ijmcict.gjpublications.com

Review Article

Received: 30.06.2019; Received after Revision: 13.07.2019; Accepted: 14.07.2019
©2019 The Authors. Published by G. J. Publications under the CC BY license. 48

Challenges of Concurrency Control in Object Oriented Distributed Database

Systems

Muhammad Haroon

University of Gujrat Lahore Sub Campus, Lahore, Pakistan.

*Corresponding author‟s e-mail: haroon.capricorn@gmail.com

Abstract

Concurrent data in any system defines the correctness and credibility of the system. It becomes trickier

and challenging in case of object oriented distributed database systems. Concurrency control is the area

in which we try to meet the maximum concurrency level in the system. The present review paper is

focused on the challenges one can face regarding concurrency control in object oriented distributed

database systems.

Keywords: Concurrency; Concurrency control; Distributed database; Object oriented distributed

database.

Introduction

One of the key properties of ACID

properties of database transaction is consistency

that must be preserved during all database

transactions. The data manipulated by these

transactions must be concurrent. When a system

works, more than one transaction try to

manipulate the same data that may cause ill

manipulation of data. To overcome this problem,

transactions are made serialized that in turn gives

the concept of concurrency control [1]. The

concurrency control is a methodology that keeps

data concurrent even when more than one

transaction tries to read or write same data

cluster [3]. In the case of object oriented

distributed database system, it becomes more

challenging and requires more attention to work

with it because the architecture of distributed

database system is very different from the

regular single site database. There are several

techniques to handle such type of situations.

Object oriented distributed database

Distributed database is same like a

regular centralized database but it is physically

spread across multiple geographical sites and is

connected through wired or wireless network. It

is done to boost up the transactions for local

users for that particular site [3].

Fig. 1. Architecture of distributed database

Fig. 1 demonstrate graphically the

concept of distributed database system in which

a single database is spread around five sites and

all fragments of database are connected by

communication media with each other.

Concurrency

Concurrency is actually one of the main

properties of relational database system that

allows multiple users to affect multiple

transactions at a time. This differentiates the

database from other storage modes like

traditional file systems, spreadsheets etc [4].

Consider one banking transaction

demonstrated graphically in fig. 2. Suppose

there‟s a bank account with amount Rs.5000.

Two transactions T1 and T2 try to work on data

mailto:haroon.capricorn@gmail.com

Haroon, 2019. Challenges of concurrency control in object oriented distributed database systems

©2019 The Authors. Published by G. J. Publications under the CC BY license. 49

of bank account. Transaction T1 adds Rs.1000

and on the same time, transaction T2 withdraws

Rs.6000. These both transactions affect the same

data at the same time. In that case if transaction

T2 executes before T1, an error containing

message “Insufficient Funds” will appear but it

will be withdrawn if T1 runs before T2. In this

case, T1 must be executed first. This is done

using serialization in concurrency control.

Transactions are made serialized [6].

Fig. 2. Bank transactions

 Transactions in distributed environment

become a little bit complex. This can be termed

as distributed transaction. In this case,

transactions can be controlled by local

transaction manager at each host computer. This

transaction manager communicates with other

host transaction to preserve concurrency control

[3,4]. These distributed transaction managers are

built to facilitate transactions to work in smooth

manner by avoiding collision or damage of data

[5].

How Concurrency can be controlled?

 The correctness of data is one of the

major concerns in any system that must be

fulfilled in any case. It is said that a system‟s

worth is of its data, not the system itself.

Systems where more than one transaction

executes with time overlap are most critical to be

considered. After getting maturity in 1970s,

researchers were started their research to control

the concurrency because it was the one of the

biggest concern of that time [6]. Some theories

had also been developed from which the

serializability theory became famous and

workable. According to this theory, transactions

are prioritized based upon their importance and

effect on the system to retain data integrity in the

system [7]. Serializability works on the principle

of making schedule of running transactions to

avoid transaction collision or data damage. In

this way, concurrency is controlled.

5. Techniques of Concurrency Control

 Serializability is the technique to stop a

transaction temporarily while other transaction is

accessing some data item. There are various

methods to control the concurrency. Few are

mentioned below:

I. Distributed Two-Phase Locking Protocol

a. Multi version Two-Phase Locking

II. Timestamp-Based Protocols

a. Multi version Timestamp

Ordering

b. Wait-Die & Wound-Wait

Algorithms

III. Validation-Based Protocols

Distributed two-phase locking protocol

 It is the most common protocol in

relational databases. This works in two phases

i.e. growing phase and shrinking phase as shown

in fig. 3.

Fig. 3. Two phase locking protocol (2PL)

 In first phase, locks are acquired only and

cannot be released and are released in second

phase and there is no new lock acquired in this

second phase [7].

 A transaction in distributed environment

is granted a lock on a transaction if the requested

lock is suitable with another lock already held by

other transactions. More than one transaction can

hold shared locks on a transaction but if there is

any transaction that holds another lock on the

item no other transaction may hold any lock on a

transaction. If a lock cannot be acquired, the

transaction in queue is waited till all unsuitable

locks held by other transactions have been

released [7].

Haroon, 2019. Challenges of concurrency control in object oriented distributed database systems

©2019 The Authors. Published by G. J. Publications under the CC BY license. 50

Table 1. Advantages and disadvantages of two

phase locking protocol

Advantages Disadvantages

Transactions are

executed with

changed manner to

ensure serializability

and to avoid

deadlock.

This protocol

sometimes becomes

overhead when a

transaction traps in a

deadline causing

rolling back again and

again.

It assures no conflict

in running

transactions.

It does not assure the

occurrence of

deadlocks and

starvation.

 Another variant of distributed two phase

locking is multi version two phase locking.

Multi version two-phase locking

 Multi version refers to the creation of a

new version after every commit rather than to

overwrite old values. This variant of multi

version protocol maintains one or more than one

old versions of items in the database to allow

work to proceed using both the current version

and older versions [8]. In ordinary two phase

locking, all locks are hold till the end of the

transaction. Write lock on a data saves a

transaction from setting a read locks on data.

When a transaction writes into data, it creates a

new version of the data [8].

Table 2. Advantages and disadvantages of multi

version two phase locking protocol

Advantages Disadvantages

It is best for read

only transactions.

Deadlock avoidance

can never be

neglected.

All read requests are

always accepted.

-

Timestamp-Based Protocols

 Timestamp based protocols work with an

additional „timestamp‟ parameter which is

associated to every transaction. The

prioritization of the transaction execution is

based upon the timestamp. There are two

timestamps i.e. read timestamp and write

timestamp. This is suitable in the case described

in fig.2. If the timestamp of transaction T1 is less

than transaction T2, the request is granted. In

this way the transactions are executed on the

basis of timestamps [4][9].

Table 3. Advantages and disadvantages of

timestamp based protocols

Advantages Disadvantages

All updates are set

into the database after

the transaction rolls

back.

When a transaction

halts, it may be

possible that it

possesses the data

held by other

transaction. In this

case, transaction

must be rolled back

[5].

Transactions

sometimes produce

conflict due to

reading similar kind

of data.

Due to the halt of a

transaction, will be

restarted with

another timestamp.

 This protocol guarantees the

serializability between transactions performing

read and writes operations. The rule based on

algorithm can be written as:

Transaction T1 starts P(A) operation.

If (Write_TimeStamp > TimeStamp (T1))

Then rollback T1

Else

Execute P(A)

and set P_ TimeStamp(A) = MAX{ P_

TimeStamp (A), TimeStamp (T1)}.

Some of the variants of timestamp based

protocols are defined in following.

Multi version Timestamp Ordering

 As described earlier, multi version refers

to the creation of a new version after every

commit rather than to overwrite old values.

Multi version timestamp ordering works on

FCFS (First Come First Server) basis [9]. The

transaction comes first will be treated first.

Whenever a transaction is allowed to execute a

write command, a new version of data item is

generated. A read is always executed first always

when it finds the suitable version to read based

on the write of the various existing versions of

item based on timestamp [9].

Table 4. Advantages and disadvantages of multi

version timestamp ordering

Advantages Disadvantages

In this approach,

deadlock can‟t occur.

If there are conflicts in

transactions, these are

sorted by rollbacks

[9].

Haroon, 2019. Challenges of concurrency control in object oriented distributed database systems

©2019 The Authors. Published by G. J. Publications under the CC BY license. 51

Wait-Die & Wound-Wait Algorithms

 Wait-Die: When a transaction T1

requests a data held by T2, then T1 is allowed to

wait only if it has a timestamp less than T2,

otherwise T1 is rolled back [4].

 If TimeStamp(T1) < TimeStamp (T2)

T1 is allowed to wait until the data is

available.

 If TimeStamp (T1) > TimeStamp (T2)

T1 is restarted later with some delay but

with the same timestamp.

 Wound-Wait: When Transaction T1

requests a data held by T2 then T1 is allowed to

wait only if it has a timestamp larger than that of

T2, otherwise T2 is rolled back [5].

If TimeStamp (T1) < TimeStamp (T2)

T1 makes T2 to be rolled back

If TimeStamp (T1) > TimeStamp (T2)

T1 is forced to wait until the required

data is available.

Validation-based protocols

 Locking mechanisms that are deadlock

free are the most favorable for us. A research

conducted in [11] suggested that there must be

another phase “validation phase” along with

write phase and read phase [11]. In this new

validation phase, it is assured that transactions

are not violating the serializability pattern.

Validation is achieved by giving each transaction

a timestamp at the end of the read phase and

synchronizing using timestamp ordering. This

produces a term optimistic concurrency control

[9].

Table 5. Advantages and disadvantages of

validation based protocol

Advantages Disadvantages

This can achieve a

better level of

concurrency with a

very low conflict rate.

There is a chance

of transaction

starvation due to

conflicting short

transactions.

Issues with techniques of concurrency control

 Some issues can arise with the techniques

of concurrency control was discussed in section

5 of this paper. Some of the issues are described

here.

Two phase locking

 Two phase locking protocol works well

for read-update applications. In this two phase

locking approach, transactions are controlled by

letting them wait at some points [12]. The major

hurdle in this locking technique is deadlock

occurrence which can be solved by using backup

and these cannot work well with query intensive

applications [12].

Timestamp ordering

 The timestamp ordering protocol

guarantees serializability of transactions as

conflicting issues are fixed by timestamp order

[3,12]. As we know, no any transaction waits for

each other transaction; therefore this protocol

ensures liberty from deadlocks. There are some

chances of starvation of lengthy transactions

because the sequence of conflicting short

transactions may repeatedly have restarted [13].

There is a case when ordering is incorrect like

transaction that started later than the current

transaction has accessed the file and committed,

in this case the current transaction is late and has

to halt [13].

Multi version concurrency control

 The concurrency control scheduler

usually rejects a read transaction because the

value it was required to read has already been

overwritten but with multi version concurrency

control, since these values are never overwritten

because it produces a new version with every

successful write [10].

 There is a tradeoff between concurrency

control and the memory. Multi version

concurrency control increases the cost of storing

multiple versions in storage media. This storage

requirement can be managed by archiving old

versions in backup [10].

Conclusions

After all discussion we made in this paper, it is

finally concluded that the concurrency is one of

the important factor that can‟t be ignored or kept

back sided. The credibility of the system is

developed with the concurrency control in the

system. Various methods to control the

concurrency have been discussed here with

advantages and disadvantages of each method. It

has also been discussed that implementation of

these methods becomes more challenging with

Haroon, 2019. Challenges of concurrency control in object oriented distributed database systems

©2019 The Authors. Published by G. J. Publications under the CC BY license. 52

object oriented distributed database systems. But

still the under discussion methods are enough to

meet a handsome level of concurrency.

Conflicts of interest

Authors declare no conflict of interest.

References

[1] Korth HF, Silberchatz A, Sudarshan S.

Concurrency Control: Database System

Concepts (4
th

 Edition), Bell Laboratories,

USA. 2001. pp. 591-617.

[2] Su C, Crooks N, Ding C, Alvisi L, Xie C.

Bringing Modular Concurrency Control To

The Next Level. In Proceedings Of The

2017 Acm International Conference On

Management Of Data, Sigmod Conference

2017, Chicago, Il, USA, May 14-19,

2017;283-97.

[3] Zamanian E, Binnig C, Harris T, Kraska T.

The End Of A Myth: Distributed

Transactions Can Scale. Proceedings of the

VLDB Endowment 2017;10(6):685-96.

[4] Curino C, Zhang Y, Jones EPC, Madden,

S. Schism: A Workload-Driven Approach

To Database Replication And Partitioning.

Proceedings of the VLDB Endowment

2010;3:48-57.

[5] Zheng W, Tu S, Kohler E, Liskov B. Fast

Databases With Fast Durability And

Recovery Through Multicore Parallelism.

In 11th Usenix Symposium On Operating

Systems Design And Implementation, Osdi

‟14, Broomfield, Co, USA, 2014;465–477.

[6] Jitendra S, Gupta VK. Concurrency Issues

of Distributed Advance Transaction

Process. Research Journal of Recent

Sciences 2012;1:426-29.

[7] Tatarowicz A, Curino C, Jones EPC,

Madden S. Lookup Tables: Fine-Grained

Partitioning For Distributed Databases. In

Ieee 28th International Conference On

Data Engineering (ICDE 2012),

Washington, DC, USA (Arlington,

Virginia), 1-5 April, 2012:102–113.

[8] Christos H. Papadimitriou: A Theorem In

Database Concurrency Control. Journal Of

The. Association for Computing

Machinery 1982;29:998-1006.

[9] Kimura, H. Foedus: Oltp Engine For A

Thousand Cores And Nvram. In

Proceedings Of The 2015 ACM Sigmod

International Conference On Management

Of Data, Melbourne, Victoria, Australia,

May 31 - June 4, 2015:691-706.

[10] Kim K, Wang T, Johnson R, Pandis I.

Ermia: Fast Memory-Optimized Database

System for Heterogeneous Workloads. In

Proceedings of The 2016 International

Conference on Management of Data,

Sigmod Conference 2016, San Francisco,

CA, USA, June 26-July 01, 2016;675-87.

[11] Diaconu C, Freedman C, Ismert E, Larson,

P, Mittal P, Stonecipher R, Verma N,

Zwilling M. Hekaton: Sql Server‟s

Memory-Optimized Oltp Engine. In

Proceedings Of The ACM Sigmod

International Conference on Management

of Data, Sigmod 2013, New York, NY,

USA, June 22-27, 2013;1243–1254.

[12] Didona D, Diegues N, Kermarrec A,

Guerraoui R, Neves R, Romano P.

Proteustm: Abstraction Meets Performance

in Transactional Memory. In Proceedings

of The Twenty-First International

Conference on Architectural Support for

Programming Languages and Operating

Systems, Asplos ‟16, Atlanta, GA, USA,

April 2-6, 2016;757-71.

[13] Shang Z, Li F, Yu JX, Zhang Z, Cheng H.

Graph Analytics Through Fine-Grained

Parallelism. In Proceedings of The 2016

International Conference on Management

Of Data, Sigmod Conference 2016, San

Francisco, CA, USA, June 26-July 01,

2016;463-78.
