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Abstract

Many mathematicians have studied Collatz conjecture and its applications; however, it remains an open
problem in the field of number theory and is interesting to study. In the present paper, we give a
generalized notion of Collatz conjecture as per the new notion of Arnold's Digitized Summation
Technique which involves adding digits of a number until we are left with only one single digit.
Moreover, a detailed description of the first twenty positive integers is given.
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Introduction

Collatz conjecture has been studied in
different fields including topological spaces [1-
2].The Collatz Conjecture still remains an open
problem in the field of number theory [3-4].
Even after 82 years, explaining whether all the
positive integers in the Collatz sequence
eventually reach the trivial 4, 2, 1 cycle is still
extremely difficult. From Paul Erd6s famous
statement, “Mathematics may not be ready for
such problems,” to Jeffery Lagarias’ own point
of view, “This i1s an extraordinarily difficult
problem, completely out of reach of present day
mathematics,” just shows the stature of the
problem.  However, = comprehending the
conjecture is very simple [5-10]. When it is an
odd number, you multiply it by 3 and add one
[11]. If it is an even number, you divide it by 2.
When vyou repeat this process, you will
eventually end up with the trivial 4, 2, 1 cycle. In
this paper we are going to look at the function f
(n) = n/2 if n= 0 (mod 2), 3n+1 if n=1 (mod 2).
Whether this holds true for all the positive
integers is still not proven. A counterexample
would either have a different cycle from the
trivial 4, 2, 1 cycle or has a divergent trajectory
leading to infinity. By 2017 87*2% of all the

starting numbers which have been tested
eventually lead to the trivial 4, 2, 1 cycle.

We are now going to look at a very new
idea known as Arnold’s Digitized Summation
Technique due to Arnold Okoth (The first author
of this paper). This is a process where you keep
adding the digits of a number until you are left
with only one single digit. That remaining digit
is known as the digitized form of that number.
This form of looking at numbers was commonly
used by renowned scientist and mathematician
Nikola Tesla. It is a simple concept with
astonishing results when it comes to its
implications to the field of number theory. With
the aid of the ADST Collatz cycle we will be
able to see how all numbers eventually end up at
the trivial 4, 2, 1. The Collatz Conjecture
describes the iterations of integers applied to a
very simple function. The conjecture specifically
states: "Starting from any positive integer n,
iterations of the function C(x) will eventually
reach the number 1. Thereafter iterations will
cycle taking successive values 4, 2, 1,..". To
define a basic term, an integer x will be defined
as odd when x = 1 (mod 2). Likewise, x will be
defined as even when x = 0 (mod 2). With those
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common terms specified, the following is the
function known as the Collatz function (Eg. (q)).

3x+1 if xis odd
Clx) =

o *x if x is even

1)

The Collatz function is named as such
with respect to its originator [12-15]. However,
for the purpose of analysis, a more succinct
function describes the same graph with less
iteration, as the odd component of the function,
C(x) = 3x+1, ensures that the following iteration
will result in an even value. The allure of the
problem and frustration of many mathematicians
is the seemingly predictable randomness of the
iterations. The specific number of iterations it
takes for a starting value to reach 1 is referred to
as the "total stopping time." The total stopping
time is a very important value, as it is the point
of focus for much of the research done on the
Conjecture [16-18]. As an example of this
tantalizing randomness, the recorded total
stopping time of initial values that are relatively
close to one another seem to form patterns, but
in the end are random. Often two or three initial
values in a row have the same stopping time, but
in a completely unpredictable way. The initial
values 1004, 1005, and 1006 all have total
stopping times of 45, for example. Also, initial
values in the range of 1000-1099, only nineteen
total stopping times exist, with the total stopping
times of 23 and 80 appearing 17 and 16 times
respectively. Tendencies of the total stopping
time can be loosely mapped, but ever so loosely.
Iteration cycles have been studied at depth, but
no avenue of research has proved fruitful in the
search of a proof. While the problem itself
remains unsolved and seemingly
unapproachable, a fair amount of research has
been done on the generalizations of the problem
when viewed as a specific case of a more general
class of functions. Some of these more general
functions are analyzable. Such generalized 3x+1
problems include the "3x+d" problem which
showed that all integer orbits are eventually
periodic for d > -1 [19], and the "gx+1" problem

which showed that problems of similar structure
can indeed be proven [20].

These results provide a plausible model
for the specific 3x+1 problem, but do not
necessarily approach a solution. There are a
many factors that contribute to the overall
difficulty of the problem. Pseudorandomness,
one of a few major influences on the difficulty
and elusiveness of the Collatz Conjecture, is
related to ergodic theory which is beyond the
technical scope of this overview. However,
according to [21], the connection shows that "the
iterates of the shift function are completely
unpredictable in the ergodic theory sense"”. This
pseudorandomness can be observed for all

values of x until x = 2" for any positive integer n.
"This supports the 3x+1 conjecture and at the
same time deprives us of any obvious
mechanism to prove it, since mathematical
arguments exploit the existence of structure,
rather than its absence." Another issue, which is
described in depth in [22] "Unpredictable
Iterations”, deals with the inability of the any
sort of computer generated algorithm to predict
nearly anything about the iterations in the long
run. This roadblock which Conway refers to as
"non-computability” reveals that the problem
could indeed be unsolvable, and a method to
approach the issue is [23].

From the perspective of an individual
less applauded in the field, Peter Schorer of
Hewlett-Packard Laboratories claims that "one
reason the problem is so difficult is that
(informally) the structure of counterexamples to
the 3x+1 Conjecture, and the structure of non-
counterexamples, are so similar. For example,
the inverse of each range element y of the 3x+1
function, be that range element a counterexample
or a non-counterexample, is an infinitary tree
with y as a root. Furthermore, all the properties
of these trees that we are aware of, are the same
regardless whether the root is a counterexample
or a non-counterexample.” Schorer then
proceeds to attempt to prove the conjecture by
showing that there is no difference between
counterexample tuples and non-counterexample
tuples. His proof has yet to gain any wide
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acceptance. The known difficulty of the problem
as well as the seemingly simple nature of the
function has lead to research in many different
fields, namely number theory, dynamical
systems, computer science, ergodic theory,
probability theory, and computational theory.

In [5] they worked on the problem from a
number theory perspective on the connection
that the problem is arithmetic in nature. Classes
of generalized versions on the function have
been defined under certain conditions. In
dynamical systems, the problem is studied via
the behavior of the function under iteration.
Computational and Fractran models have been
used to show the validity of the conjecture to a
very large scale in the computer science field.
Ergodic theory deals with the presence of an
invariant measure in the dynamic system.
Probability theory attempts to model the
behavior of the iteration. Lastly, computational
theory connects with the Collatz Conjecture via
[23], who states that "there is a generalized 3x+1
function whose iteration can simulate a universal
computer”. [5] The fact that the Collatz
Conjecture spreads across so many different
fields of mathematics has allowed many great
minds to work on and contribute to the
knowledge base of the problem. It has opened up
avenues of research in all of these disciplines
and has leads to some important results outside
of the conjecture itself. To the avail of many a
mathematician, in spite of the results generated
by supercomputers, and mocking the analysis of
generalized forms of the function, the Collatz
Conjecture remains unsolved and seems to be
unsolvable. A fair amount is known about it, but
the vast majority of that knowledge has proved
useless in the realm of proving the conjecture.
The broad scope of the problem, its seemingly
simple nature, and the vast depth of related
problems will continue to intrigue and puzzle
mathematicians for, quite possibly, a very long
time to come.

Research methodology

In this section, we give the definitions,
examples and techniques which are useful as the
research methodology.

Definition 2.1

Arnold's Digitized Summation Technique
(ADST): Refers to adding the digits of a number
until you are left with only one single digit.

Definition 2.2

Digitized number form: Refers to the
digit we obtain after applying ADST to a
number.

Definition 2.3

Hailstone sequence: Refers to the
sequence of descending and ascending numbers
which you obtain when you perform the Collatz
process. The ascension is caused by the 3n+1
operation while the descending aspect is brought
by the n+2 operation.

Definition 2.4

Arnold’s values: These refer to values
assigned to numbers based on their digitized
number form. We basically we have only 3 signs
based on the multiples of 3. If a number is 3 or a
multiple of 3 it gets a value of (0), if the number
is exactly before 3 or a multiple of 3 it is given a
(-) value and finally, if a number is exactly after
3 or amultiple of 3 it gets a (+) value.

Definition 2.5

Stopping time: In the Collatz sequence
you will notice that numbers eventually lead to
the trivial 4, 2, 1 cycle which repeats itself.
Therefore, 1 is regarded as the stopping time
when performing the Collatz process.

Results and discussion

In this section, we give the results of our
study and their discussions. We begin by the
following fundamental result.

Theorem 3.1.
If po is such that po = —1 (mod 2"), where

n is the largest integer such that this congruence
holds, then ¢(po) = n.

Proof.
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Although this theorem follows from (1)

by observing that n+1 = 0 (mod 2k), k-maximal
implies that oX(n) is even and for 1 ™ j < k,
a'(n) is odd, we offer an alternative proof:
Suppose without loss of generality that po is odd.

Then 3py + 1 = —2 (mod 2"). Repeating this

argument we get that p, = —1 (mod 2”_2) and
P,-1 =—1 (mod 2). Since all those p; are odd,
this gives us that ¢(pg)=n. Suppose now that
@(Po) > n, i.e. p, = -1 (mod 2). But 2p, — 1 =
3p,-1, and since 2p, = —2 (mod 22). So, po= 2Pn
=1 -1 (mod 22). Repeating this reasoning we

get that pp = —1 (mod 2”+1), which contradicts
the fact that n is maximal.

Corolary 3.2
@(m) is finite for every m.

Corolary 3.3

For every natural number k there are
infinitely many numbers n such that ¢(n) = k.

Proof

Just take n = | - 2K — 1, where | is an
odd number. From the formula (1) it is easy to
see that *(n) 2 (mod 3) for all k such that this
number is an integer. In particular o*™(n) 2 (mod
3), but since (from the definition of ¢(n)) it is
also even, we have that «*™(n) =2 (mod 6). But
now, since every even number is eventually
taken to an odd number by successive
applications of the function T , and T executes
the operation a on an odd number m exactly
o(m) times, we deduce that every number is
taken to a number congruent to 2 (mod 6).

Theorem 3.4

In order to prove the Collatz conjecture,
it is sufficient to prove it for every number
congruent to 2 (mod 6).

Proof

Since ¢(m) is finite for every integer mitis
not possible for an unbounded trajectory to
consist entirely of odd numbers and thus our

initial upper bound can be improved. From

Theorem 1 we conclude that if m ™ m, = 2k 1
for some integer Kk, then ¢(m) ™ k = logy(mp +
1). After ¢(m) applications of o we must divide
the result by 2 at least once. Since our goal is an
upper bound, we will assume division by 2 occurs
exactly once and that this process continues
indefinitely. Since the Collatz conjecture states
that when you have an odd number you multiply
it by 3 and add one then if it is an even number,
you divide it by 2. When you repeat this
process, you will eventually end up with the 4,
2, 1 cycle. Examples include:

n=20 we get the
20,10,5,16,8,4,2,1,(4,2,1,4,2,1,...)
n=19 we get the sequence
19,58,29,88,44,22,11,34,17,52,26,13,40,20,10,5,
16,8,4,2,1,(4,2,1,4,2,1,...)

n=18 we get the sequence
18,9,28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,
8,4,2,1,(4,2,1,42,1,...)

n=17 we get the sequence
17,52,26,13,40,20,10,5,16,8,4,2,1,(4,2,1,4,2,1,)
n=16 we get the sequence
16,8,4,2,1,(4,2,1,4,2,1,...)

n=15 we get the sequence
15,46,23,70,35,106,53,160,80,40,20,10,5,16,8,4,
2,1,4.2,1,42,1,...x

n=14 we get the sequence
14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1,
4,2,1,42,1,...)

n=13 we get the sequence
13,40,20,10,5,16,8,4,2,1,(4,2,1,4,2,1,...)

n=12 we get the sequence
12,6,3,10,5,16,8,4,2,1,(4,2,1,4,2,1...)

n=11 we get the sequence
11,34,17,52,26,13,40,20,10,5,16,8,4,2,1,(4,2,1,4,
2,1,...)

n=10 we get the sequence
10,5,16,8,4,2,1,(4,2,1,4,2,1,...)

n=9 we get the sequence
9,28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4
2,1,(4,2,1,42,1,...)

n=8 we get the sequence 8,4,2,1,(4,2,1,4,2,1,...)
n=7 we get the sequence
7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1,(4,
2,1,42,1,...)

sequence
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n=6 we get the sequence
6,3,10,5,16,8,4,2,1,(4,2,1,4,2,1...)

n=5 we get the sequence
5,16,8,4,2,1,(4,2,1,4,2,1,...)

n=4 we get the sequence 4,2,1,(4,2,1,4,2,1,...)
n=3 we get the sequence
3,10,5,16,8,4,2,1,(4,2,1,4,2,1...)

n=2 we get the sequence 2,1,(4,2,1,4,2,1,...)

n=1 we get the sequence 1,(4,2,1,4,2,1,...)

Next, we want to consider Collatz Conjecture
using ADST. The Collatz conjecture seems to be
forming a different sequence for numbers which
are not multiples. The sequence for n=4 is
different from the sequence of n=3. Before we
look at the ADST and its implications to the
Collatz Conjecture, let us first look at an in depth
explanation of the ADST and why it is important
when it comes to analyzing the Collatz
Conjecture. Digitized number form: It refers to
the digit we obtain after applying ADST to a
number.

Example 3.5

For 2345 we have
1+4=5.

Therefore 5 is the digitized number form
of 2345 while the entire process is also known as
ADST.

2+3+4+5 = 14

More examples include:
a. 145 1+4+5=10 1+0=1.
The digitized number form of 145 is 1.
b. 3854 3+8+5+4=20 2+0=2.
The digitized number form of 3854 is 2.

c. 3000 3+0+0+0=3
The digitized number form of 3000 is 3.
d. 22945 2+2+9+4+5=22 2+2=4
The digitized number form of 22945 is 4
e. 275 2+7+5=14 1+4=5.
The digitized number form of 275 is 5.
f. 6315 6+3+1+5=15 1+5=6
The digitized number form of 6315 is 6
g. 43 4+3=7
The digitized number form of 43 is 7
h. 53756 5+3+7+5+6=26 2+6=8.
The digitized number form of 53756 is 8.
i. 9
The digitized number form of 9 is 9.

By considering table 1, when we look at
numbers through ADST you will notice that
among all the numbers from 1 till infinity we
only have 9 possible digitized number forms.
This is because we have only 9 digits in
mathematics, excluding 0. In the table 1 you will
observe that the first column is named AV.
which stands for Arnold's Values. These values
help in analyzing the numbers using ADST as
explained in depth with the analysis of prime
numbers. Basically, we have only 3 signs based
on the multiples of 3. If a number is 3 or a
multiple of 3 it gets a sign of (0), if the number is
exactly before 3 or a multiple of 3 it is given a (—
) sign and finally, if a number is exactly after 3
or a multiple of 3 it gets a (+) sign. Next we
consider Collatz trees. There are various Collatz
trees which have been formulated by computer
programs showing the Collatz sequence. Some
of the Collatz trees are illustrated in Fig. 1 and 2.

Table 1. Digitized number forms and Arnold’s values

AV. +|- (0] +|-]{0|+|-|0|+ |- 0 |+ |- 0 [+ |- 0 [+ |-
Integers |1|2]3|4|5|/6|7(8[9]10|11]12|13|14|15|16|17|18]19|20
DNF 1/2/3/4|5|6|7]8]9]1 |2 |3 |4 |5 |6 [7 |8 |9 |1 |2

The Collatz trees in Fig. 1 and 2 both
form unpredictable patterns. We also find that
the Collatz trees can become very large in size as
the wvalues of numbers increase. It would
therefore be unidealistic to represent a Collatz
tree with numbers up to 10™.

ADST Collatz cycle

©2019 The Authors. Published by G. J. Publications under the CC BY license.

Unlike the Collatz tree, the ADST
Collatz cycle can be used to represent numbers
from 1 till infinity. Numbers portray a particular
property which is hidden and can only be visible
when you observe them in their digitized number
form. Notice what happens when we observe the
sequence below using their digitized form. The
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sequence of powers of 2 appear as follows: 1, 2,
4,8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,
8192, 16384, 32768, 65536, 131072. When you
look at the digitized form of the above sequence
it will look as follows; 1, 2, 4,8, 7,5, 1, 2, 4, 8,
7,5, 1,2, 4,8, 7,5. With the digitized form you
will notice that the sequence 1, 2, 4, 8, 7, 5
repeats itself.

Interestingly, we also observe that the
trivial 4, 2, 1 cycle does not just appear at the
end of the Collatz sequence, but also throughout
the Collatz sequence. This is only visible when
you look at the sequence through ADST. This
sequence will form the basis of our ADST
Collatz cycle.

This is because part of the Collatz
conjecture involves dividing even numbers by 2.
The n/2 operation forms the descending aspect of
the hailstone sequence. If you only consider the
odd numbers in the sequence generated by the
Collatz process, then each odd number is on
average ¥ of the previous one. Therefore, the
geometric mean of the ratios outcomes is %. This
yields a heuristic argument that every Hailstone
sequence should decrease in the long run, this is
not evidence against other cycles, but against
divergence. The geometric and heuristic
arguments are not a proof as it assumes the
Hailstone sequence is assembled from
uncorrelated probabilistic events. However, the
ADST Collatz cycle not only shows the evidence
against other cycles but how the hailstone
sequence are assembled. This is illustrated by
Fig. 1. The cycle in Fig. 2 represents the ADST
Collatz cycle.

The arrows represent the n+2 operation
which implies that the numbers outside the
brackets are digitized number form of even
numbers while the numbers inside the brackets
refers to the digitized number form of odd
numbers. The arrows do not apply for the
numbers that are inside the brackets. If you get
an odd number (whose digitized number forms
are inside the brackets) and you perform the 3n
+1 operation, you will get an even number
whose digitized number form is outside the
brackets but inside the same circle.

Fig. 1. Collatz tree 1 [5]

Fig. 2. Collatz tree 2 [23]

However, when you divide even numbers
which are multiples of 6 and 9 you will obtain a
different cycle from the 1, 2, 4, 8, 7, 5 sequence
which is used for the ADST cycle. For multiples
of 6 you will obtain a repeating 6, 3 cycle. For
multiples of 9 you will obtain a repeating 9, 9
cycle as observed in Fig. 3. The 3x + 1 operation
eliminates the 6, 3 cycle and the 9, 9 cycle since
the addition in the operation implies that the
result will not be a multiple of 3. The multiples 6
and 9 are also multiples of 3. You will realize
from Fig. 3 that when you divide a number
whose digitized number form is 3 or 6. The
sequence will tend to rotate between 3 and 6
while if a number has a digitized number of 9
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and you divide by 2 the sequence will tend to
rotate at 9. The stopping time of the Collatz
Conjecture (1) and the brackets are also
positioned where the digitized number form has
+ve Arnold’s value.

Theorem 3.6.

For all powers of two, with odd k, it is
2 (mod 3) = 2 vk € N |(K) (mod 2) = 1.

Fig. 3. ADST Collatz cycles
Conclusions

In the present work, we have considered the
ADST Collatz cycle to the Collatz tree, we can
be able to conclude that no matter which number
you have, when you divide it by 2 you will
always result with the same trivial cycle (4, 2, 1).
We have given a generalized notion of Collatz
conjecture as per the new notion of Arnold's
Digitized Summation Technique which involves
adding digits of a number until we are left with
only one single digit.
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