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Abstract 

A lot of studies have been conducted on dense topological spaces over a long period of time and 

interesting results have been obtained. Normality and compactness on topological spaces have also been 

investigated for decades however, characterization when the subspaces are particularly dense has not  

been exhausted. In the present study, we consider the case when the countable subspaces are dense. We 

introduce the notion of normality in dense topological spaces Also, some characterizations and 

properties of these notions are investigated. 
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Introduction 

Many studies have been conducted on 

dense topological subspaces over a long period 

of time and interesting results have been 

obtained [1-4]. Normality and compactness on 

topological subspaces have also been 

investigated by many mathematicians [5-7]. 

However; characterization when the subspaces 

are particularly dense has not been exhausted. In 

this study, we consider the case when the 

countable subspaces are dense. The objective of 

the study is to characterize normality of dense 

topological. This work involves a description of 

both finite and infinite dimensional dense 

topological subspaces [8-10]. One point 

compactification and Tychonoff theorems [11-

13] have been used in the description of

normality and compactness to prove situations

where a dense topological subspace is countable.

Concerning normality [14-16], results show that

a topological subspace X is normal on every

dense countable subset.

Moreover, a subspace E of H is strongly 

normal in H if and only if E is normal in itself 

and for each continuous real-valued function f on 

E there exists a real-valued function g on H 

continuous at all points of E which is an 

extension of f. Next, we have shown that if 

continuum hypothesis holds, then there is a 

countable dense set X of ℜc such that ℜc is 

normal on X [17-19]. Furthermore, linearly 

ordered spaces are normal [20-23]. On 

compactness, it is known that if X is a compact 

space and Y is a Hausdorff space, then it implies 

that every continuous bijection f:  X → Y is a 

homeomorphism. Also every locally compact 

Hausdorff space is Tychonoff [24-25].  

Research methodology 

Definition 1.1  

A topological space X is called dense in 

X if every point x in X either belongs to A or is a 

limit point of A. That is, the closure of A is 

constituting the whole set X. A topological space 

(X, τ) which has countable dense subset is called 

separable space. 

Definition 1.2 

A normal space is a topological space in 

which, for any two disjoint closed sets E and F , 

there exist two disjoint open sets U and V such 

that E ⊂ U , and F ⊂ V . 

Definition 1.3 

A function from A to B is a subset f of A 

× B such that for all a in A there is exactly one b 

in B and (a, b) ∈  f . Therefore, we write f: A → 
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B for the function f ⊂ A × B and think off as a 

rule that to any element a ∈  A associates a 

unique object f (a) ∈  B. The set A is the domain 

of f and also B is a codomain of f; dom(f ) = A, 

cod(f ) = B. The function f is therefore: 

Injective or one-to-one if distinct 

elements of A having distinct images in B, 

Surjective or onto if all elements in B are images 

of elements in A, Bijective if both injective and 

surjective if any elements of B is the image of 

precisely one element of A. 

Definition 1.4 

A topological space (X, τ ) is called a 

compact space if every open cover of X has a 

finite subcover. Compact spaces are always 

Lindel¨of, that is, they are topological spaces in 

which every open cover has a countable 

subcover. 

Definition 1.5 

Let X be a topological space and let ∞ 

denote an ideal point called the point of infinity. 

Let X be a space and ∞ not included in X. So 

X∞ = X∪∞ is   defining a topology ∞ and X∞ by 

specifying open set: 

The open sets of X, considered as subsets 

of X∞, the subsets of X∞ whose complements 

are closed, compact subsets of X and, the set 

X∞. 

The space (X∞, τ∞) is called the one 

point compactification of X. 

Definition 1.6 

Regular space is a topological space in 

which every neighborhood of a point contains a 

closed neighborhood of the same point. While 

completely regular space or Tychonoff space is a 

Hausdorff space . 

Definition 1.7 

Let (X, τ ) be a topological space. N be a 

subset of X and p a point in N . Then N is said to 

be a neighborhood of the point p if there exists 

an open set U such that p ∈  U ⊆ N . 

Definition 1.8 

 A family γ of subspaces of subsets of a 

space X has the finite intersection property 

provided that every finite sub collection of γ 

has non empty intersection. 

Definition 1.9 

Let X be a topological space, Y ⊂ X. We 

say that Y is internally normal in X if for every 

two disjoint subsets A and B of Y which are 

closed in X, There are disjoint sets U and V , 

open in X, such that A ⊂ U and B ⊂ V . Further, 

we say that Y is internally compact in X if every 

M ⊂ Y closed in X is compact. 

Definition 1.10 

A topological space (X, τ) is called 

separable if it contains a countable dense subset. 

There exists a sequence {xn}∞n=1 of elements 

of the space such that every nonempty open 

subset of the space contains at least one element 

of the sequence. 

Definition 1.11 

A topological space is normal if there 

exists open sets UA and UB that separate 

disjoint closed sets A and B. Normality implies 

that any finite closed number of disjoint closed 

sets can be simultaneously separated. A 

convergent sequence with its limit point shows 

that ”finite” cannot be extended to ”countable”. 

A space is defined to be collection wise normal if 

any discrete collection of closed sets can be 

separated. 

Results and discussion 

Normal topological spaces are a very 

important class of topological spaces. We 

dedicate this section to the study of normality of 

dense topological subspaces. We state the 

following  proposition. 

Proposition 3.1. 

For every separable topological sub space 

X the following conditions are equivalent: 

(i). X is normal on every dense countable 

subset. 

(ii). Any two separable disjoint closed 

subspaces of X can be separated by disjoint open 

sets. 

Proof. 

Suppose that axiom (i) holds, we can let 

sets M and N to be separable disjoint closed sets. 

Therefore, if we pick a countable set A to be a 

proper subset of M , that is, A ⊂ M and also, a 

countable set B, that is, B ⊂ N such that M = A 

and N = B then since X is separable, there is a 

countable dense subspace P ⊂ X. Hence, if we 
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apply conditions for normality of X, we 

therefore have P ∪ A ∪ B. 

Conversely, from [60] it is known that any two 

separable disjoint closed subspaces of X can be 

separated by disjoint open sets. This implies that 

X is normal on every dense countable subset. 

This is illustrated in the following theorem 

below. 

Theorem 3.2.  

 Let (Y, τ) be a topological space. Then 

there exists is a Hausdorff non-regular separable 

sub space X which is normal on each countable 

dense subspace. 

Proof. 

 Let Y be a copy of α1 + 1 in ℜc. If we 

take a countable dense subspace P which exists 

in ℜc and is also disjoint from Y. Hence space X 

will be the set Y ∪ P with the following 

topology: 

(i). All points in X, except α1 having their 

basic neighborhoods that are inherited from ℜc. 

(ii). The basic neighborhoods of α1 are the 

sets, (G ∩ P ) ∪ {α1} where G is open set in ℜc 

that is containing the point α1. 

We can therefore easily see that X is a non-

regular space. It therefore suffices that X is 

Hausdorff because its topology is finer than the 

topology φ on Y ∪ P inherited from ℜc. We 

claim that the closure of the countable set A in X 

coincides with φ-closure of A in Y ∪ P . It is true 

that these closures can differ only in the point α1. 

Now if α1 ∈ clℜc (A) and, α1 ∈ A, then α1 ∈ 

clℜc (A \ Y ), which can take place if and only if 

α1 ∈ clX(A). Therefore, from Proposition 4.1, it 

suffices to prove that any separable disjoint 

closed sets M and N in X can indeed be 

separated by open sets. From the above 

observation, we can see that M and N are closed 

in (Y ∪ P, φ) which is δ-compact and hence 

normal. Consequently the sets M and N can be 

separated in (Y ∪ P, φ) and hence in X. 

 The following consequences follow 

immediately. 

Corollary 3.3.  

 Let (Y, τ) be a topological space there 

exists a Tychonoff separable subspace X which 

is not normal on any countable dense sub- space. 

 

 

Proof.  

 Let the subspace (X, τ) be a T1-space that 

is if and only if x, y ∈ X and x    y. Therefore, by 
Theorem 3.2 this implies that there exists an 

open set U that contains x and another open set 

V that is containing y for x    y, then x ∈ U, but x 

∈/ V.  Similarly, y ∈ V but y ∈/ U.  Hence, the 

intersection of U and V is be empty, that is, U ∩ 

V   ϕ so that they are disjoint. A T1- space is 

said to be normal if and only if whenever A, B 

are disjoint-closed subsets of X, then there exists 

open sets U , V in X, A ⊆ U , and also B ⊆ V 

such that is U ∩ V    ϕ. Next we move to a 

fundamental result on normality involving real-

valued function on a strongly normal subspace. 

We state the results as follows. 

Theorem 3.4.  

 Let (H, τ) be a topological space. A 

subspace E of H is strongly normal in H if and 

only if E is normal in itself and for each 

continuous real-valued function f on E there 

exists a real-valued function g on H continuous 

at all points of E which is an extensions off. 

Proof.  

 We suppose that, E is strongly normal in 

H. It also implies that E is normal. If τ is a 

topology on set H then its topological space is 

(H, τ). The family µ − {N: N ⊂ H \ E} ∪ τ is a 

subspace of the generated topology τ ∗ on the set 

H. Hence, H can be deduce to be endowed with 

our new topology τ ∗. Therefore (H, τ ∗) is a new 

topological space. Since E is a subspace of H, we 

obtain the space HE and so we have (E, τ ∗) 

being inherited from (H, τ ∗). Therefore, from 

strong normality of E in H it follows that space 

HE is also normal. We can therefore, conclude 

that E is closed in HE due to the fact that E is a 

subbase of H. So, H and HE generate the same 

topology on E.  

 Every continuous function f : E → ℜ can 

be therefore be extended to a continuous 

function g : HE → ℜ. If we take any e ∈ E, and 

since the family {∈ τ : e ∈ E} is a base of HE, at 

E, the function g is continuous at e with regard to 

the original topology τ of space H. Conversely, if 

we take any two closed disjoint non-empty 

subsets M and N of E, Then since E is normal, 

Then by [3] there exits a continuous f : E → ℜ, 

such that f (M ) = {0} and f(N ) = {1}. If we 

extend this function, g: H → ℜ is continuous at 
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each point of E. Then the interiors U and V of 

the sets {h ∈ H : g(h) < 1 } and, {h ∈ H : g(h) > 

2 } are disjoint open subsets of H such that M ⊂ 

U and N ⊂ V . 

Proposition 3.5.  

 Let (X, τ) be a normal subspace in (Y, τ). 

If X is a regular T1-space and Y is dense then Y 

is a real normal space. 

Proof.  

 Since X is non-empty then the 

topological space (X, τ ) is densely normal and 

therefore K-normal [31]. Let X to be a regular 

T1-space and let A and B be any two non-empty 

subsets of Y such that the closures of A and B 

are in X and are disjoint. Since Y is dense in X 

and X is normal there exists disjoint closed 

subsets P and H in X such that A ⊂ P and B ⊂ 

H. Since X is K-normal, then by Theorem 4.4 

there exists a continuous real valued function f 

on X such that f (P) = {0} and f(H) = {1}. 

Therefore we consider Y to be strongly normal 

in X if for every two disjoint non-empty subsets 

A and B of Y closed in Y there exists a Y -

continuous function f : X → ℜ. Such that f (A)   

{0} and f (B) = {1}. Hence, Y is a real normal 

space. Next we consider normality with regard to 

a fundamental hypothesis called continuum 

hypothesis for countable dense subspaces of a 

topological subspace (X, τ). We state the result 

as follows. 

Theorem 3.6.  

 Let (Y, τ) be a real topological space. If 

the continuum hypothesis holds in Y then there 

exists a countable dense subspace X of ℜc such 

that ℜc is normal on X. 

Proof.  

 Consider sets E and F and let ω   {(Eα, 

Fα) : 1 ≤ α < C} be an enumeration of all disjoint 

pairs of finite subsets of E. We construct subsets 

Xα   {xα: n ∈ ω} and Yα   {yα : 1 ≤ v ≤ α} of 

the space ℜαsuch that the following conditions 

are satisfied: 

(i). Xα is dense in ℜα, 

(ii). xβ | γ   xγ , for all n ∈ ω and 1 ≤ γ < α, 

(iii). yβ | γ   yγ, for all 1 ≤ v ≤ γ < β < α, 

(iv). If 1 ≤ v  ≤ α and Clℜv (δv(Ev)) ∩ Clℜv 

(δ(Fv))       ϕ, then yv ∈ 

Clℜα (δα(Ev)) ∩ Clℜα (δα(Fv)). 

Lastly, we consider a result on normality 

concerning linearly ordered topological. We 

show that every linear ordered subspace of a 

Hausdorff space is normal as shown in the next 

result. 

Theorem 3.7.  

 Let (X, τ) be a Hausdorff space then 

linearly ordered sub- spaces of X are normal. 

Proof.  

 We need show that every well-ordered 

space is normal. Consider the half-open interval 

(p, q], p < q. Let P and Q be two disjoint closed 

subsets and let P0 denote the smallest subset of 

X. Suppose neither P nor Q contain P0, for any 

point p ∈ P then there exists a point, xp < p such 

that (xp, p] is disjoint from Q. Similarly, for any 

point q ∈ Q there exists a point xq < q such that 

(xq, q] is disjoint from P. Suppose that p0 ∈ P ∪ 

Q, such that p0 ∈ P. The one-point set {p0} = 

[p0, p+) is open and closed since X is Hausdorff. 

Therefore we can find disjoint open sets U and V 

such that P − {p0} ⊂ U and also Q ⊂ V. Then P 

⊂ U ∪ {p0} and Q ⊂ V − {p0} where the open 

sets U ∪ {p0} and V − {p0} are disjoint. Hence, 

linearly subspaces are normal.  

Conclusions 

In the present paper, we have studied various 

notions of normality in dense topological spaces. 

We have introduced Also, some 

characterizations and properties of these notions 

have been investigated. The results obtained are 

useful in explaining deformations and 

transformations in three dimensional objects. 
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