

Research Article

Graphs of Continuous Functions in Topological Spaces

K. O. Onyango, O. Ongati, B. Okelo*

School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo-Kenya.

*Corresponding author's e-mail: <u>bnyaare@yahoo.com</u>

Abstract

In the present paper, we introduce and study the notions of β^* -open sets, β^* -continuous functions and (β^*, τ) -graph by utilizing the notion of β^* -open sets. Also, some characterizations and properties of these notions are investigated.

Keywords: Topoloical space, Open set, β^* -Open sets; β^* -Continuous functions; (β^* , τ)-graph.

Introduction

Studies of properties of sets and functions on topological spaces are of interest to many researchers and mathematicians (see [1-11] and the references therein). In [12-16] the authors introduced the notion of β -open sets and β -continuity in topological spaces. Moreover, in [17-21] the authors introduced δ -preopen sets and δ-almost continuity. The concepts of Z*open set and Z*-continuity introduced by [22]. The purpose of this work is to introduce and study the notions of β^* -open sets, β^* -continuous functions and (β^*, τ) -graph by utilizing the β*-open notion of sets. Also, some characterizations and properties of these notions are investigated. Throughout this paper (X, τ) and (Y, σ) (simply, X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A)and $X \setminus A$ denote the closure of A, the interior of A and the complement of A, respectively. A subset A of a topological space(X, τ) is called regular open (resp. regular closed) [23] if A=int(cl(A)) (resp. A=cl(int(A))).

A point x of X is called δ -cluster [24] point of A if int(cl(U)) $\cap A=\phi$, for every open set U of X containing x. The set of all δ -cluster points of A is called δ -closure of A and is denoted cl $\delta(A)$.A set A is δ -closed if and only if $A=cl\delta(A)$. The complement of a δ -closed set is

said to be δ -open [25]. The δ -interior of a subset A of X is the union of all δ -open sets of X contained in A. A subset A of a space X is called: (i). a-open [5] if $A\subseteq int(cl(int\delta(A)))$, (ii). α -open [15] if A \subseteq int(cl(int(A))), (iii). preopen [11] if $A\subseteq int(cl(A))$, (iv). δ -preopen [17] if $A\subseteq int(cl\delta(A)),$ δ-semiopen (v). [16] if $A\subseteq cl(int\delta(A)),$ Z-open [10] if (vi). $A \subseteq cl(int\delta(A)) \cup int(cl(A))$ (vii). γ -open [9] or bopen sp-open [4] [3] or if $A \subseteq cl(int(A)) \cup int(cl(A)),$ (viii). e-open [6] if $A \subseteq cl(int\delta(A)) \cup int(cl\delta(A)), (ix).$ Z*-open [13] if $A \subseteq cl(int(A)) \cup int(cl\delta(A)), (x). \beta$ -open [1] or semi-preopen [2] if $A \subseteq cl(int(cl(A)))$ and, (xi). e*-open [7] if $A\subseteq cl(int(cl\delta(A))).$ The complement of an a-open (resp. α-open, δsemiopen, δ -preopen, Z-open, γ -open, e-open, Z*-open, β -open, e*-open) sets is called a-closed [5](resp. α -closed [15], δ -semi-closed [16], δ pre-closed[17], Z-closed [10], y-closed [3], eclosed [6], Z*-closed[13], β -closed [1], e*closed [7]). The intersection of all δ -preclosed (resp. β -closed) set containing A is called the δ preclosure (resp. β -closure) of A and is denoted by δ -pcl(A) (resp. β -cl(A)).

The union of all δ -preopen (resp. β -open) sets contained in A is called the δ -pre-interior (resp. β -interior) of A and is denoted by δ pint(A) (resp. β -int(A)). The family of all δ -open (resp. δ -semiopen, δ -preopen, Z*-open, β -open, e*-open) sets is denoted by $\delta O(X)$ (resp. δSO(X), δPO(X), Z*O(X), βO(X), e*O(X)). Let A be a subset of a topological space (X, τ). Then (i). δ-pint(A)=A∩int(clδ(A)) and δ-pcl(A)=A∪ cl(intδ(A)) and (ii). β-int(A)=A∩cl(int(cl(A))) and β-cl(A)=A∪int(cl(int(A))).

Research methodology

Definition 2.1.

A subset A of a topological space(X, τ) is said to be: (i). a β^* -open set if A \subseteq cl(int(cl(A)))U int(cl δ (A)) and (ii) a β^* -closed set if int(cl(int(A)))\cap cl(int δ (A)) \subseteq A. The family of all β^* -open (resp. β^* -closed) subsets of a topological space (X, τ) will be as always denoted by $\beta^*O(X)$ (resp. $\beta^*C(X)$).

Definition 2.2.

Let (X, τ) be a topological space. Then (i). The union of all β^* -open sets of contained in A is called the β^* -interior of A and is denoted by β^* -int(A) and (ii). The intersection of all β^* closed sets of X containing A is called the β^* closure of A and is denoted by β^* -cl(A).

Definition 2.3.

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called β^* -continuous if $f^{-1}(V)$ is β^* -open in X, for each $V \in \sigma$.

Definition 2.4.

A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called super-continuous [14] (resp. a-continuous [5], α continuous [12], pre-continuous [11], δ -semicontinuous[8], Z-continuous [10], γ -continuous [9], e-continuous[6], Z*-continuous [13], β continuous [1], e*-continuous[7]) if f⁻¹(V) is δ open (resp. a-open, α -open, per open, δ semiopen, Z-open, γ -open, e-open, Z*-open, β open,e*-open) in X, for each V $\in \sigma$.

Example 2.5.

Let X={a, b, c, d} with topology $\tau = \{\varphi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$. Then the function f: $(X, \tau) \rightarrow (X, \tau)$ defined by f(a) = a, f(b) = f(c) = c and f(d) = d is β^{*-} continuous but it is not β -continuous. The function f: $(X, \tau) \rightarrow (X, \tau)$ defined by f(a) = d, f(b) = a, f(c) = c and f(d) = b is e*-continuous but it is not β^{*-} continuous.

Example 2.6.

Let X = {a, b, c, d, e} with topology $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then the

function f: $(X, \tau) \rightarrow (X, \tau)$ defined by f(a) = a, f(b) = e, f(c) = c, f(d) = d and f(e) = b is β^* -continuous but it is not Z*-continuous.

Remark 2.7

(i). If $A \in \delta O(X)$ and $B \in \beta^* O(X)$, then $A \cap B \in \beta^* O(X)$, (ii). Let A and B be two subsets of a space (X,τ) . If $A \in \delta O(X)$ and $B \in \beta^* O(X)$, then $A \cap B \in \beta^* O(A)$ and $A \cap B \in \beta^* O(X)$.

Definition 2.8.

The β^* -frontier of a subset A of X, denoted by β^* -Fr(A), is defined by β^* -Fr(A)= β^* cl(A) $\cap\beta^*$ -cl(X\A) equivalently β^* -Fr(A)= β^* cl(A)\ β^* -int(A).

Definition 2.9.

A function f: $X \to Y$ has a (β^*, τ) -graph if for each $(x, y)\in(X\times Y)\setminus G(f)$, there exist a β^* open U of X containing x and an open set V of Y containing y such that $(U\times V)\cap G(f) = \varphi$.

Definition 2.10.

A topological space (X, τ) is said to be β^* -connected if it is not the union of two nonempty disjoint β^* -open sets.

Definition 2.11.

A space X is said to be β^* -compact if every β^* open cover of X has a finite subcover.

Results and discussion

In this section we give the results of our study. We begin with characterizations of β^* -Open sets.

Theorem 3.1.

Let (X, τ) be a topological space. Then the following hold. (i). The arbitrary union of β^* -open sets is β^* -open. (ii). The arbitrary intersection of β^* -closed sets is β^* -closed.

Proof.

(i). Let $\{A_i: i \in I\}$ be a family of β^* -open sets. Then $A_i \subseteq cl(int(cl(A_i))) \cup int(cl\delta(A_i))$ and hence

 $\bigcup_i A_i \subseteq \bigcup_i (cl(int(cl(A_i))) \bigcup int(cl\delta(A_i))) \subseteq cl(int(cl(\bigcup_i A_i))) \bigcup int(cl\delta(\bigcup_i A_i)), \text{ for all } i \in I. \text{ Thus, } \bigcup_i A_i \text{ is } \beta^*-$ open. The proof of (ii) follows from (i).

Remark 3.2.

By the following next example we show that the intersection of any two β^* -open sets is not β^* -open.

Example 3.3.

Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $A = \{a, c\}$ and $B = \{b, c\}$ are β^* -open sets. But, $A \cap B = \{c\}$ is not β^* -open.

Theorem 3.4.

Let A, B be two subsets of a topological space (X, τ). Then the following hold: (i). β^* cl(X) = X and β^* -cl(φ) = φ , (ii). A $\subseteq \beta^*$ -cl(A), (iii). If A \subseteq B, then β^* -cl(A) $\subseteq \beta^*$ -cl(B), (iv) x $\in \beta^*$ -cl(A) if and only if for each a β^* -open set U containing x, U \cap A /= φ , (v). A is β^* -closed set if and only if A = β^* -cl(A), (vi). β^* -cl(β^* -cl(A)) = β^* -cl(A), (vii). β^* -cl(A) $\cup \beta^*$ -cl(B) $\subseteq \beta^*$ -cl(A \cup B), (viii). β^* -cl(A \cap B) $\subseteq \beta^*$ -cl(A) $\cap \beta^*$ -cl(B).

Proof.

The other conditions hold by definition. To prove (vi), by using (ii) and $A \subseteq \beta^*$ -cl(A), we have β^* -cl(A) $\subseteq \beta^*$ -cl(β^* -cl(A)). Let $x \in \beta^*$ -cl(β^* -cl(A)). Then, for every β^* -open set V containing x, $V \cap \beta^*$ -cl(A) /= φ .

Example 3.5.

Let X = {a, b, c, d} with topology $\tau = \{\varphi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$ and consider $y \in V \cap \beta^*$ -cl(A). Then, for every β^* -open set G containing y, A \cap G /= φ . Since V is a β^* -open set, $y \in V$ and A $\cap V$ /= φ , then x $\in \beta^*$ -cl(A). Therefore, β^* -cl(β^* -cl(A)) $\subseteq \beta^*$ -cl(A).

Theorem 3.6.

For a subset A in a topological space (X, τ), the following statements are true: (i). β^* -cl(X\A) = X\ β^* -int(A) and (ii). β^* -int(X\A) = X\ β^* -cl(A).

Proof.

Follows from the fact the complement of β^* -open set is a β^* -closed and $\cap_i(X \setminus A_i) = X \setminus \cup_i A_i$.

Theorem 3.7.

Let A be a subset of a topological space(X, τ). Then the following are equivalent: (i). A is a β^* -open set and (ii). A = β -int(A) U pint δ (A).

Proof.

(i)⇒(ii). Let A be a β^* -open set. ThenA ⊆ cl(int(cl(A))) ∪ int(cl\delta(A)) and hence,

 $A \subseteq (A \cap cl(int(cl(A)))) \cup (A \cap int(cl\delta(A))) = \beta - int(A) \cup pint\delta(A) \subseteq A.$ (ii) \Rightarrow (i). Trivial.

Theorem 3.8.

For a subset A of space (X, τ) . Then the following are equivalent: (i). A is a β^* -closed set and (ii) $A = \beta$ -cl(A) \cap pcl $\delta(A)$.

Proof.

Follows from Theorem 3.7.

Theorem 3.9.

Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a function. Then the following statements are equivalent: (1) f is β^* -continuous, (2) For each $x \in X$ and $V \in \sigma$ containing f(x), there exists $U \in \beta^*O(X)$ containing x such that f(U) $\subseteq V$, (3) The inverse image of each closed set in Y is β^* -closed in X, (4) int(cl(int(f¹(B)))) \cap cl(int $\delta(f^{1}(B))) \subseteq f^{1}(cl(B))$,for each $B \subseteq Y$, (5) $f^{1}(int(B)) \subseteq$ cl(int(cl(f¹(B)))) \cup int(cl $\delta(f^{1}(B))$),for each $B \subseteq$ Y, (6) β^* -cl(f¹(B)) \subseteq f¹(cl(B)), for each $B \subseteq$ Y,(7) f(β^* -cl(A)) \subseteq cl(f(A)), for each $A \subseteq X$,(8) f¹(int(B)) $\subseteq \beta^*$ -int(f¹(B)), for each $B \subseteq Y$.

Proof.

 $(1) \Leftrightarrow (2)$ and $(1) \Leftrightarrow (3)$ are obvious.

(3)⇒(4). Let B ⊆ Y. Then by (3) $f^{-1}(cl(B))$ is β^* -closed.

This means $f^{-1}(cl(B)) \supseteq int(cl(int(f^{-1}(cl(B))))) \cap cl(int\delta(f^{-1}(cl(B)))) \supseteq int(cl(int(f^{-1}(B)))) \cap cl(int\delta(f^{-1}(B))).$

(4) \Rightarrow (5). By replacing Y\B instead of B in (4), we have

 $\inf(cl(\inf(f^{-1}(Y \setminus B)))) \cap cl(\inf\delta(f^{-1}(Y \setminus B))) \subseteq f^{-1}(cl(Y \setminus B)).$

Therefore, $f^{-1}(int(B)) \subseteq cl(int(cl(f^{-1}(B)))) \cup int(cl\delta(f^{-1}(B))))$, for each $B \subseteq Y$.

 $(5)\Rightarrow(1)$. Obvious.

(3)⇒(6). Let B ⊆ Y and $f^{-1}(cl(B))$ be β^* -closed in X. Then β^* -cl($f^{-1}(B)$) ⊆ β^* -cl($f^{-1}(cl(B))$) = $f^{-1}(cl(B))$.

(6)⇒(7). Let A ⊆ X. Then f(A) ⊆ Y. By (6), we have f⁻¹(cl(f(A))) ⊇ β*-cl(f⁻¹(f(A))) ⊇ β*-cl(A). Therefore, cl(f(A)) ⊇ f⁻¹(cl(f(A))) ⊇ f(β*-cl(A)). (7)⇒(3). Let F ⊆ Y be a closed set. Then, f⁻¹(F) = f⁻¹(cl(F)). Hence by (7), f(β*-cl(f⁻¹(F))) ⊆ cl(f (f⁻¹(F))) ⊆ (F) = F, thus, β*-cl(f⁻¹(F)) ⊆ f⁻¹(F), so, f⁻¹(F) = β*-cl(f⁻¹(F)). There-fore, f⁻¹(F) ∈ β*C(X).

(1) \Rightarrow (8). Let B \subseteq Y. Then f⁻¹(int(B)) is β^* -open in X. Thus, f⁻¹(int(B)) = β^* -int(f⁻¹(int(B))) $\subseteq \beta^*$ -

 $\operatorname{int}(f^{-1}(B))$. Therefore, $f^{-1}(\operatorname{int}(B)) \subseteq \beta^*$ - $\operatorname{int}(f^{-1}(B))$.

(8)⇒(1). Let U ⊆ Y be an open set. Thenf⁻¹(U) = $f^{-1}(int(U)) \subseteq \beta^*-int(f^{-1}(U))$. Hence, $f^{-1}(U)$ isβ*-open in X. Therefore, f is β*-continuous.

Remark 3.10.

If f: $X \to Y$ is a β^* -continuous and g: $Y \to Z$ is a continuous, then the composition $g \circ f$: $X \to Z$ is β^* -continuous.

Next, we consider some properties and separation axioms. We state the following propositions.

Proposition 3.11.

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a β^* -continuous function and A is δ -open in X, then the restriction given by f\A:(A, τ A) \rightarrow (Y, σ) is β^* -continuous.

Proof.

Let V be an open set of Y. Then by hypothesis $f^{1}(V)$ is β^{*} -open in X. Hence, we have $(f \setminus A)^{-1}(V) = f^{-1}(V) \cap A \beta^{*} \in O(A)$. Thus, it follows that $f \setminus A$ is β^{*} -continuous.

Proposition 3.12.

Let $(X, \tau) \rightarrow (Y, \sigma)$ be a function and $\{G_i: i \in I\}$ be a cover of X by δ -open sets of (X, τ) .

If $f \setminus G_i$: $(G_i, \tau_{G_i}) \rightarrow (Y, \sigma)$ is β^* -continuous for each $i \in I$, then f is β^* -continuous.

Proof.

Let V be an open set of (Y, σ) . Then by hypothesis

 $f^{-1}(V) = X \cap f^{-1}(V) = \bigcup \{G_i \cap f^{-1}(V): i \in I\} = \bigcup \{(f \setminus G_i)^{-1}(V): i \in I\}.$

Since $f \setminus G_i$ is β^* -continuous for each $i \in I$, then $(f \setminus G_i)^{-1}(V) \in YO(G_i)$ for each $i \in I$. By Proposition 3.11, we have $(f \setminus G_i)^{-1}(V)$ is β^* -continuous in X. Therefore, f is β^* -continuous in(X, τ).

Theorem 3.13.

The set of all points x of X at which a function f: $(X, \tau) \rightarrow (Y, \sigma)$ is not β^* -continuous is identical with the union of the β^* -frontiers of the inverse images of open sets containing f(x).

Proof.

Necessity. Let x be a point of X at which f is not β^* -continuous. Then, there is an open set V of Y containing f(x) such that $U \cap (X \setminus f^1(V))$

is not φ , for every $U \in \beta^*O(X)$ containing x. Thus, we have $x \in \beta^*-cl(X\setminus f^{-1}(V)) = X\setminus \beta^*-int(f^{-1}(V))$ and $x \in f^{-1}(V)$. Therefore, we have $x \in \beta^*-Fr(f^{-1}(V))$ is open set containing f(x). *Sufficiency*. We assume that f is β^* -continuous at $x \in X$. Then there exists $U \in \beta^*O(X)$ containing x such that $f(U) \subseteq V$. Therefore, we have $x \in U \subseteq f^{-1}(V)$ and hence $x \in \beta^*-int(f^{-1}(V)) \subseteq X\setminus \beta^*-Fr(f^{-1}(V))$. This is a contradiction. This means that f is not β^* -continuous at x.

The following implications are hold fora topological space X.

Lemma 3.14.

A function f: $X \rightarrow Y$ has a has a (β^*, τ) graph if and only if for each $(x, y) \in X \times Y$ such that y is not equal to f(x), there exist a β^* -open set U and an open set V containing x and y, respectively, such that $f(U) \cap V = \varphi$.

Proof.

Trivially follows readily from the above definition.

Theorem 3.15.

If f: X \rightarrow Y is a β^* -continuous function and Y is Hausdorff, then f has a (β^* , τ)-graph.

Proof.

Let $(x, y) \in X \times Y$ such that y is not equal to f(x). Then there exist open sets U and V such that $y \in U$, $f(x) \in V$ and $V \cap U = \varphi$. Since f is β^* -continuous, there exists β^* -open W containing x such that $f(W) \subseteq V$. This implies that $f(W) \cap U \subseteq V \cap U = \varphi$. Therefore, f has a (β^*, τ) -graph.

Theorem 3.16.

If f: $(X, \tau) \rightarrow (Y, \sigma)$ has a (β^*, τ) -graph, then f(K) is closed in (Y, σ) for each subset K which is β^* -compact relative to (X, τ) .

Proof.

Suppose that y is not in f(K). Then (x, y) is not in G(f) for each $x \in K$. Since G(f) is (β^*, τ) -graph, there exist a β^* -open set U containing x and an open set V of Y containing y such that $f(U) \cap V = \varphi$. The family $\{U_x : x \in K\}$ is a cover of K by β^* -open sets. Since K is β^* -compact relative to (X, τ) , there exists a finite subset K_0 of K such that f(K) is closed in (Y, σ) .

©2019 The Authors. Published by G. J. Publications under the CC BY license.

Theorem 3.17.

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a β^* -continuous injection and (Y, σ) is T_i , then (X, τ) is β^* - T_i , where i = 0, 1, 2.

Proof.

We prove that the theorem for i = 1. Let Y be T_1 and x, y be distinct points in X. There exist open subsets U, V in Y such that $f(x) \in U$, f(y) is not in U, f(x) is not in V and $f(y) \in V$. Since f is β^* -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are β^* -open subsets of X such that $x \in f^{-1}(U)$, y is not in $f^{-1}(U)$, x is not in $f^{-1}(V)$ and $y \in f^{-1}(V)$. Hence, X is β^* - T_1 . $K \subseteq \cup \{U_x : x \in K0\}$. Let V $= \cap \{V_x : x \in K_0\}$. Then V is an open set in Y containing y.

Therefore, we have $f(K) \cap V \subseteq (\bigcup_{x \in K0} f(U_x)) \cap V \subseteq \bigcup_{x \in K0} (f(U_x)) \cap V = \varphi$. It follows that, y is not in cl(f(K)). Therefore, f(K) is closed in (Y, σ) .

Corollary 3.18.

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is β^* -continuous function and Y is Hausdorff, then f(K) is closed in (Y, σ) for each subset K which is β^* -compact relative to (X, τ) .

Theorem 3.19.

If f: X \rightarrow Y is a β^* -continuous function and Y is a Hausdorff space, then f has a (β^* , τ)graph.

Proof.

Let $(x, y) \in X \times Y$ such that y is not in f(x) and Y be a Hausdorff space. Then there exist two open sets U and V such that $y \in U$, $f(x) \in V$ and $V \cap U = \varphi$. Since f is β^* -continuous, there exists a β^* -open set W containing x such that $f(W) \subseteq V$. This implies that $f(W) \cap U \subseteq V \cap U = \varphi$. Therefore, f has a (β^*, τ) -graph.

Corollary 3.20.

If f: X \rightarrow Y is β^* -continuous and Y is Hausdorff, then G(f) is β^* -closed in X \times Y.

Theorem 3.21.

If f: X \rightarrow Y has a (β^* , τ)-graph and g: Y \rightarrow Z is a β^* -continuous function, then the set {(x, y):f(x) = g(y)} is β^* -closed in X \times Y.

Proof.

Let A = {(x, y): f(x) = g(y)} and (x, y) is not in A. We have f(x) is not equal to g(y) and then (x, g(y)) $\in (X \times Z) \setminus G(f)$. Since f has a (β^* , τ)-graph, then there exist a β*-open set U and an open set V containing x and g(y), respectively such that f(U) ∩ V = φ. Since g is a β*continuous function, then there exist an β*-open set G containing y such that g(G) ⊆ V. We have f(U) ∩ g(G) = φ. This implies that (U × G) ∩ A = φ. Since U × G is β*-open, then (x, y) /∈ β*cl(A). Therefore, A is β*-closed in X × Y. *Theorem 3.22.*

If f: X \rightarrow Y is a β^* -continuous function and Y is Hausdorff, then the set {(x, y) \in X \times X: f(x) = f(y)} is β^* -closed in X \times X. *Proof.*

Let $A = \{(x, y): f(x) = f(y)\}$ and let $(x, y) \in (X \times X) \setminus A$. Then f(x) is not equal to f(y). Since Y is Hausdorff, then there exist open sets U and V containing f(x) and f(y), respectively, such that $U \cap V = \varphi$. But, f is β *-continuous, then there exist β *-open sets H and Gin X containing x and y, respectively, such that $f(H) \subseteq U$ and $f(G) \subseteq V$. This implies $(H \times G) \cap A = \varphi$. By Theorem 3.21, we have $H \times G$ is a β *-open set in $X \times X$ containing(x, y). Hence, A is β *-closed in $X \times X$.

Theorem 3.23.

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is β^* -continuous and S is closed in $X \times Y$, then $\upsilon_x(S \cap G(f))$ is β^* closed in X, where υ_x represents the projection of $X \times Y$ onto X.

Proof.

Let S be a closed subset of $X \times Y$ and $x \in \beta^*$ -cl ($\upsilon_x(S \cap G(f))$). Let $U \in \tau$ containing x and $V \in \sigma$ containing f(x). Since f is β^* -continuous, by Theorem 3.21, $x \in f^{-1}(V) \subseteq \beta^*$ -int($f^{-1}(V)$). Then $U \cap \beta^*$ -int($f^{-1}(V)$) $\cap \upsilon_x(S \cap G(f))$ contains some point z of X. This implies that $(z, f(z)) \in S$ and $f(z) \in V$. Thus we have $(U \times V) \cap S \neq \varphi$ and hence $(x, f(x)) \in cl(S)$. Since A is closed, then $(x, f(x)) \in S \cap G(f)$ and $x \in \upsilon_x(S \cap G(f))$. Therefore $\upsilon_x(S \cap G(f))$ is β^* -closed in (X, τ).

Theorem 3.24.

If (X, τ) is a β^* -connected space and f: $(X, \tau) \rightarrow (Y, \sigma)$ has a (β^*, τ) -graph and β^* continuous function, then f is constant.

Proof.

Suppose that f is not constant. There exist disjoint points x, $y \in X$ such that f(x) = f(y). Since (x, f(x)) is not in G(f), then $y \neq f(x)$,

hence, there exist open sets U and V containing x and f(x) respectively such that $f(U) \cap V = \varphi$. Since f is β^* -continuous, there exist a β^* -open sets G containing y such that $f(G) \subseteq V$. U and V are disjoint β^* -open sets of (X, τ) , it follows that (X, τ) is not β^* -connected. Therefore, f is constant.

Conclusions

In the present paper, we have studied various notions of continuity in general topological spaces. We have introduced and studied the notions of β^* -open sets, β^* -continuous functions and (β^* , τ)-graph by utilizing the notion of β^* -open sets. Also, some characterizations and properties of these notions have been investigated.

Conflicts of interest

Authors declare no conflict of interest.

References

- Achieng OE, Odongo D, Okelo NB. On Certain Properties of Identification Topological Subspaces. Int J Mod Comput Inf Commun Technol 2018;3(11):238-240.
- [2] Amudhambigai B, Revathi GK, Hemalatha T, On Strongly b - d- Continuous M-Set Functions. Indian Streams Research Journal 2016;6(8):21-28
- [3] Andrijevic D. On b-open sets, Mat Vesnik 1996;48:59-64.
- [4] Andrijevic V. Semi-preopen sets. Mat Vesnik 1986;38:24-32.
- [5] Brooks F. Indefinite cut sets for real functions. Amer Math Monthly 1971;78: 1007-10.
- [6] Change CL. Fuzzy topological spaces. J Math Anal Appl 1968;24:182-90.
- [7] Csaszar A. Generalized open sets. Acta Math Hungar 1997;75(2):65-87.
- [8] Dontchev J, Przemski M. On the various decompositions of continuous and some weakly continuous. Acta Math Hung 1996; 71(1):109-20.
- [9] Maheshwari SN, Prasad R. On ROsspaces, Portugal Math 1975;34:213-17.
- [10] Maji PK, Biswas R, Roy PR. Fuzzy soft sets. J Fuzzy Math 2009;9:589-602.

Graphs of continuous functions in topological spaces

- [11] Ogata H Operations on Topological Spaces and Associated Topology. Math Japonila 1991;36(1):175-84.
- [12] Okelo NB. On characterization of various finite subgroups of Abelian groups, Int J Mod Comp Info and Com Technol, 2018; 1(5):93-98.
- [13] Okelo NB. Theoretical Analysis of Mixedeffects Models with minimized Measurement Error, Int J Math Soft Comp 2018;8(1):55-67.
- [14] Okelo NB. Certain properties of Hilbert space operators, Int J Mod Sci Technol 2018;3(6):126-32.
- [15] Okelo NB. Certain Aspects of Normal Classes of Hilbert Space Operators. Int J Mod Sci Technol 2018;3(10):203-7.
- [16] Okelo NB. Characterization of Numbers using Methods of Staircase and Modified Detachment of Coefficients. Int J Mod Comput Inf Commun Technol 2018;1(4):88-92.
- [17] Okelo NB. On Characterization of Various Finite Subgroups of Abelian Groups. Int J Mod Comput Inf Commun Technol 2018; 1(5):93-98.
- [18] Okelo NB. On Normal Intersection Conjugacy Functions in Finite Groups. Int J Mod Comput Inf Commun Technol 2018;1(6):111-15.
- [19] Okwany I, Odongo D, Okelo NB. Characterizations of Finite Semigroups of Multiple Operators. Int J Mod Comput Inf Commun Technol 2018;1(6):116-20.
- [20] Ramesh R, Mariappan R. Generalized open sets in Hereditary Generalized Topological Spaces J Math Comput Sci 2015;5(2):149-59.
- [21] Saha S. Local connectedness in fuzzy setting. Simon Stevin 1987;61:3-13.
- [22] Sanjay M. On α-τ-Disconnectedness and ατ-connectedness in Topological spaces. Acta Scientiarum Technol 2015;37:395-399.
- [23] Shabir M, Naz M. On soft topological spaces. Comput Math Appl 2011;61:1786-99.
- [24] Vijayabalaji S, Sathiyaseelan N. Interval Valued Product Fuzzy Soft Matrices and

its Application in Decision Making. Int J Mod Sci Technol 2016;1(7):159-63.

[25] Wanjara AO, Okelo NB, Ongati O. On Characterization of Very Rotund Banach Spaces. Int J Mod Comput Inf Commun Technol 2018;1(5):99-102.
