

Research Article

Graphs of Continuous Functions in Topological Spaces

K. O. Onyango, O. Ongati, B. Okelo*

School of Mathematics and Actuarial Science,
Jaramogi Oginga Odinga University of Science and Technology,
P. O. Box 210-40601, Bondo-Kenya.

*Corresponding author's e-mail: bnyaare@yahoo.com

Abstract

In the present paper, we introduce and study the notions of β^* -open sets, β^* -continuous functions and (β^*, τ) -graph by utilizing the notion of β^* -open sets. Also, some characterizations and properties of these notions are investigated.

Keywords: Topoloical space, Open set, β^* -Open sets; β^* -Continuous functions; (β^*, τ) -graph.

Introduction

Studies of properties of sets and functions on topological spaces are of interest to many researchers and mathematicians (see [1-11] and the references therein). In [12-16] the authors introduced the notion of β -open sets and β -continuity in topological spaces. Moreover, in [17-21] the authors introduced δ -preopen sets and δ -almost continuity. The concepts of Z^* -open set and Z^* -continuity introduced by [22]. The purpose of this work is to introduce and study the notions of β^* -open sets, β^* -continuous functions and (β^*, τ) -graph by utilizing the notion of β^* -open sets. Also, some characterizations and properties of these notions are investigated. Throughout this paper (X, τ) and (Y, σ) (simply, X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , $cl(A)$, $int(A)$ and $X \setminus A$ denote the closure of A, the interior of A and the complement of A, respectively. A subset A of a topological space (X, τ) is called regular open (resp. regular closed) [23] if $A = int(cl(A))$ (resp. $A = cl(int(A))$).

A point x of X is called δ -cluster [24] point of A if $int(cl(U)) \cap A = \emptyset$, for every open set U of X containing x. The set of all δ -cluster points of A is called δ -closure of A and is denoted $cl\delta(A)$. A set A is δ -closed if and only if $A = cl\delta(A)$. The complement of a δ -closed set is

said to be δ -open [25]. The δ -interior of a subset A of X is the union of all δ -open sets of X contained in A. A subset A of a space X is called: (i). a-open [5] if $A \subseteq int(cl(int\delta(A)))$, (ii). α -open [15] if $A \subseteq int(cl(int(A)))$, (iii). preopen [11] if $A \subseteq int(cl(A))$, (iv). δ -preopen [17] if $A \subseteq int(cl\delta(A))$, (v). δ -semiopen [16] if $A \subseteq cl(int\delta(A))$, (vi). Z-open [10] if $A \subseteq cl(int\delta(A)) \cup int(cl(A))$ (vii). γ -open [9] or b-open [3] or sp-open [4] if $A \subseteq cl(int(A)) \cup int(cl(A))$, (viii). e-open [6] if $A \subseteq cl(int\delta(A)) \cup int(cl\delta(A))$, (ix). Z^* -open [13] if $A \subseteq cl(int(A)) \cup int(cl\delta(A))$, (x). β -open [1] or semi-preopen [2] if $A \subseteq cl(int(cl(A)))$ and, (xi). e^* -open [7] if $A \subseteq cl(int(cl\delta(A)))$. The complement of an a-open (resp. α -open, δ -semiopen, δ -preopen, Z-open, γ -open, e-open, Z^* -open, β -open, e^* -open) sets is called a-closed [5] (resp. α -closed [15], δ -semi-closed [16], δ -pre-closed [17], Z-closed [10], γ -closed [3], e-closed [6], Z^* -closed [13], β -closed [1], e^* -closed [7]). The intersection of all δ -preclosed (resp. β -closed) set containing A is called the δ -preclosure (resp. β -closure) of A and is denoted by $\deltapcl(A)$ (resp. $\beta-cl(A)$).

The union of all δ -preopen (resp. β -open) sets contained in A is called the δ -pre-interior (resp. β -interior) of A and is denoted by $\delta-pint(A)$ (resp. $\beta-int(A)$). The family of all δ -open (resp. δ -semiopen, δ -preopen, Z^* -open, β -open, e^* -open) sets is denoted by $\delta O(X)$ (resp.

$\delta SO(X)$, $\delta PO(X)$, $Z^*O(X)$, $\beta O(X)$, $e^*O(X)$). Let A be a subset of a topological space (X, τ) . Then (i). $\delta\text{-pint}(A) = A \cap \text{int}(\text{cl}(\delta(A)))$ and $\delta\text{-pcl}(A) = A \cup \text{cl}(\text{int}(\delta(A)))$ and (ii). $\beta\text{-int}(A) = A \cap \text{cl}(\text{int}(\text{cl}(A)))$ and $\beta\text{-cl}(A) = A \cup \text{int}(\text{cl}(\text{int}(A)))$.

Research methodology

Definition 2.1.

A subset A of a topological space (X, τ) is said to be: (i). a β^* -open set if $A \subseteq \text{cl}(\text{int}(\text{cl}(A))) \cup \text{int}(\text{cl}(\delta(A)))$ and (ii) a β^* -closed set if $\text{int}(\text{cl}(\text{int}(A))) \cap \text{cl}(\text{int}(\delta(A))) \subseteq A$. The family of all β^* -open (resp. β^* -closed) subsets of a topological space (X, τ) will be as always denoted by $\beta^*O(X)$ (resp. $\beta^*C(X)$).

Definition 2.2.

Let (X, τ) be a topological space. Then (i). The union of all β^* -open sets of contained in A is called the β^* -interior of A and is denoted by $\beta^*\text{-int}(A)$ and (ii). The intersection of all β^* -closed sets of X containing A is called the β^* -closure of A and is denoted by $\beta^*\text{-cl}(A)$.

Definition 2.3.

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called β^* -continuous if $f^{-1}(V)$ is β^* -open in X , for each $V \in \sigma$.

Definition 2.4.

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called super-continuous [14] (resp. a-continuous [5], α -continuous [12], pre-continuous [11], δ -semi-continuous [8], Z-continuous [10], γ -continuous [9], e-continuous [6], Z^* -continuous [13], β -continuous [1], e^* -continuous [7]) if $f^{-1}(V)$ is δ -open (resp. a-open, α -open, per open, δ -semiopen, Z-open, γ -open, e-open, Z^* -open, β -open, e^* -open) in X , for each $V \in \sigma$.

Example 2.5.

Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$. Then the function $f: (X, \tau) \rightarrow (X, \tau)$ defined by $f(a) = a$, $f(b) = f(c) = c$ and $f(d) = d$ is β^* -continuous but it is not β -continuous. The function $f: (X, \tau) \rightarrow (X, \tau)$ defined by $f(a) = d$, $f(b) = a$, $f(c) = c$ and $f(d) = b$ is e^* -continuous but it is not β^* -continuous.

Example 2.6.

Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then the

function $f: (X, \tau) \rightarrow (X, \tau)$ defined by $f(a) = a$, $f(b) = e$, $f(c) = c$, $f(d) = d$ and $f(e) = b$ is β^* -continuous but it is not Z^* -continuous.

Remark 2.7

(i). If $A \in \delta O(X)$ and $B \in \beta^*O(X)$, then $A \cap B \in \beta^*O(X)$, (ii). Let A and B be two subsets of a space (X, τ) . If $A \in \delta O(X)$ and $B \in \beta^*O(X)$, then $A \cap B \in \beta^*O(A)$ and $A \cap B \in \beta^*O(X)$.

Definition 2.8.

The β^* -frontier of a subset A of X , denoted by $\beta^*\text{-Fr}(A)$, is defined by $\beta^*\text{-Fr}(A) = \beta^*\text{-cl}(A) \cap \beta^*\text{-cl}(X \setminus A)$ equivalently $\beta^*\text{-Fr}(A) = \beta^*\text{-cl}(A) \setminus \beta^*\text{-int}(A)$.

Definition 2.9.

A function $f: X \rightarrow Y$ has a (β^*, τ) -graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist a β^* -open U of X containing x and an open set V of Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

Definition 2.10.

A topological space (X, τ) is said to be β^* -connected if it is not the union of two nonempty disjoint β^* -open sets.

Definition 2.11.

A space X is said to be β^* -compact if every β^* -open cover of X has a finite subcover.

Results and discussion

In this section we give the results of our study. We begin with characterizations of β^* -Open sets.

Theorem 3.1.

Let (X, τ) be a topological space. Then the following hold. (i). The arbitrary union of β^* -open sets is β^* -open. (ii). The arbitrary intersection of β^* -closed sets is β^* -closed.

Proof.

(i). Let $\{A_i: i \in I\}$ be a family of β^* -open sets. Then $A_i \subseteq \text{cl}(\text{int}(\text{cl}(A_i))) \cup \text{int}(\text{cl}(\delta(A_i)))$ and hence $\bigcup_i A_i \subseteq \bigcup_i (\text{cl}(\text{int}(\text{cl}(A_i))) \cup \text{int}(\text{cl}(\delta(A_i)))) \subseteq \text{cl}(\text{int}(\text{cl}(\bigcup_i A_i))) \cup \text{int}(\text{cl}(\delta(\bigcup_i A_i)))$, for all $i \in I$. Thus, $\bigcup_i A_i$ is β^* -open. The proof of (ii) follows from (i).

Remark 3.2.

By the following next example we show that the intersection of any two β^* -open sets is not β^* -open.

Example 3.3.

Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then $A = \{a, c\}$ and $B = \{b, c\}$ are β^* -open sets. But, $A \cap B = \{c\}$ is not β^* -open.

Theorem 3.4.

Let A, B be two subsets of a topological space (X, τ) . Then the following hold: (i). $\beta^*\text{-cl}(X) = X$ and $\beta^*\text{-cl}(\emptyset) = \emptyset$, (ii). $A \subseteq \beta^*\text{-cl}(A)$, (iii). If $A \subseteq B$, then $\beta^*\text{-cl}(A) \subseteq \beta^*\text{-cl}(B)$, (iv) $x \in \beta^*\text{-cl}(A)$ if and only if for each a β^* -open set U containing x , $U \cap A \neq \emptyset$, (v). A is β^* -closed set if and only if $A = \beta^*\text{-cl}(A)$, (vi). $\beta^*\text{-cl}(\beta^*\text{-cl}(A)) = \beta^*\text{-cl}(A)$, (vii). $\beta^*\text{-cl}(A) \cup \beta^*\text{-cl}(B) \subseteq \beta^*\text{-cl}(A \cup B)$, (viii). $\beta^*\text{-cl}(A \cap B) \subseteq \beta^*\text{-cl}(A) \cap \beta^*\text{-cl}(B)$.

Proof.

The other conditions hold by definition. To prove (vi), by using (ii) and $A \subseteq \beta^*\text{-cl}(A)$, we have $\beta^*\text{-cl}(A) \subseteq \beta^*\text{-cl}(\beta^*\text{-cl}(A))$. Let $x \in \beta^*\text{-cl}(\beta^*\text{-cl}(A))$. Then, for every β^* -open set V containing x , $V \cap \beta^*\text{-cl}(A) \neq \emptyset$.

Example 3.5.

Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$ and consider $y \in V \cap \beta^*\text{-cl}(A)$. Then, for every β^* -open set G containing y , $A \cap G \neq \emptyset$. Since V is a β^* -open set, $y \in V$ and $A \cap V \neq \emptyset$, then $x \in \beta^*\text{-cl}(A)$. Therefore, $\beta^*\text{-cl}(\beta^*\text{-cl}(A)) \subseteq \beta^*\text{-cl}(A)$.

Theorem 3.6.

For a subset A in a topological space (X, τ) , the following statements are true: (i). $\beta^*\text{-cl}(X \setminus A) = X \setminus \beta^*\text{-int}(A)$ and (ii). $\beta^*\text{-int}(X \setminus A) = X \setminus \beta^*\text{-cl}(A)$.

Proof.

Follows from the fact the complement of β^* -open set is a β^* -closed and $\bigcap_i (X \setminus A_i) = X \setminus \bigcup_i A_i$.

Theorem 3.7.

Let A be a subset of a topological space (X, τ) . Then the following are equivalent: (i). A is a β^* -open set and (ii). $A = \beta^*\text{-int}(A) \cup \text{pint}\delta(A)$.

Proof.

(i) \Rightarrow (ii). Let A be a β^* -open set. Then $A \subseteq \text{cl}(\text{int}(\text{cl}(A))) \cup \text{int}(\text{cl}\delta(A))$ and hence,

$A \subseteq (A \cap \text{cl}(\text{int}(\text{cl}(A)))) \cup (A \cap \text{int}(\text{cl}\delta(A))) = \beta^*\text{-int}(A) \cup \text{pint}\delta(A) \subseteq A$.

(ii) \Rightarrow (i). Trivial.

Theorem 3.8.

For a subset A of space (X, τ) . Then the following are equivalent: (i). A is a β^* -closed set and (ii) $A = \beta^*\text{-cl}(A) \cap \text{pcl}\delta(A)$.

Proof.

Follows from Theorem 3.7.

Theorem 3.9.

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then the following statements are equivalent: (1) f is β^* -continuous, (2) For each $x \in X$ and $V \in \sigma$ containing $f(x)$, there exists $U \in \beta^*\text{O}(X)$ containing x such that $f(U) \subseteq V$, (3) The inverse image of each closed set in Y is β^* -closed in X , (4) $\text{int}(\text{cl}(\text{int}(f^{-1}(B)))) \cap \text{cl}(\text{int}\delta(f^{-1}(B))) \subseteq f^{-1}(\text{cl}(B))$, for each $B \subseteq Y$, (5) $f^{-1}(\text{int}(B)) \subseteq \text{cl}(\text{int}(\text{cl}(f^{-1}(B)))) \cup \text{int}(\text{cl}\delta(f^{-1}(B)))$, for each $B \subseteq Y$, (6) $\beta^*\text{-cl}(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B))$, for each $B \subseteq Y$, (7) $f(\beta^*\text{-cl}(A)) \subseteq \text{cl}(f(A))$, for each $A \subseteq X$, (8) $f^{-1}(\text{int}(B)) \subseteq \beta^*\text{-int}(f^{-1}(B))$, for each $B \subseteq Y$.

Proof.

(1) \Leftrightarrow (2) and (1) \Leftrightarrow (3) are obvious.

(3) \Rightarrow (4). Let $B \subseteq Y$. Then by (3) $f^{-1}(\text{cl}(B))$ is β^* -closed.

This means $f^{-1}(\text{cl}(B)) \supseteq \text{int}(\text{cl}(\text{int}(f^{-1}(\text{cl}(B))))) \cap \text{cl}(\text{int}\delta(f^{-1}(\text{cl}(B)))) \supseteq \text{int}(\text{cl}(\text{int}(f^{-1}(B)))) \cap \text{cl}(\text{int}\delta(f^{-1}(B)))$.

(4) \Rightarrow (5). By replacing $Y \setminus B$ instead of B in (4), we have

$\text{int}(\text{cl}(\text{int}(f^{-1}(Y \setminus B)))) \cap \text{cl}(\text{int}\delta(f^{-1}(Y \setminus B))) \subseteq f^{-1}(\text{cl}(Y \setminus B))$.

Therefore, $f^{-1}(\text{int}(B)) \subseteq \text{cl}(\text{int}(\text{cl}(f^{-1}(B)))) \cup \text{int}(\text{cl}\delta(f^{-1}(B)))$, for each $B \subseteq Y$.

(5) \Rightarrow (1). Obvious.

(3) \Rightarrow (6). Let $B \subseteq Y$ and $f^{-1}(\text{cl}(B))$ be β^* -closed in X . Then $\beta^*\text{-cl}(f^{-1}(B)) \subseteq \beta^*\text{-cl}(f^{-1}(\text{cl}(B))) = f^{-1}(\text{cl}(B))$.

(6) \Rightarrow (7). Let $A \subseteq X$. Then $f(A) \subseteq Y$. By (6), we have $f^{-1}(\text{cl}(f(A))) \supseteq \beta^*\text{-cl}(f^{-1}(f(A))) \supseteq \beta^*\text{-cl}(A)$.

Therefore, $\text{cl}(f(A)) \supseteq f^{-1}(\text{cl}(f(A))) \supseteq f(\beta^*\text{-cl}(A))$.

(7) \Rightarrow (3). Let $F \subseteq Y$ be a closed set. Then $f^{-1}(F) = f^{-1}(\text{cl}(F))$. Hence by (7), $f(\beta^*\text{-cl}(f^{-1}(F))) \subseteq \text{cl}(f(f^{-1}(F))) \subseteq F = F$, thus, $\beta^*\text{-cl}(f^{-1}(F)) \subseteq f^{-1}(F)$, so, $f^{-1}(F) = \beta^*\text{-cl}(f^{-1}(F))$. Therefore, $f^{-1}(F) \in \beta^*\text{C}(X)$.

(1) \Rightarrow (8). Let $B \subseteq Y$. Then $f^{-1}(\text{int}(B))$ is β^* -open in X . Thus, $f^{-1}(\text{int}(B)) = \beta^*\text{-int}(f^{-1}(\text{int}(B))) \subseteq \beta^*$.

$\text{int}(f^{-1}(B))$. Therefore, $f^{-1}(\text{int}(B)) \subseteq \beta^* \text{-int}(f^{-1}(B))$.

(8) \Rightarrow (1). Let $U \subseteq Y$ be an open set. Then $f^{-1}(U) = f^{-1}(\text{int}(U)) \subseteq \beta^* \text{-int}(f^{-1}(U))$. Hence, $f^{-1}(U)$ is β^* -open in X . Therefore, f is β^* -continuous.

Remark 3.10.

If $f: X \rightarrow Y$ is a β^* -continuous and $g: Y \rightarrow Z$ is a continuous, then the composition $g \circ f: X \rightarrow Z$ is β^* -continuous.

Next, we consider some properties and separation axioms. We state the following propositions.

Proposition 3.11.

If $f: (X, \tau) \rightarrow (Y, \sigma)$ is a β^* -continuous function and A is δ -open in X , then the restriction given by $f|A: (A, \tau|A) \rightarrow (Y, \sigma)$ is β^* -continuous.

Proof.

Let V be an open set of Y . Then by hypothesis $f^{-1}(V)$ is β^* -open in X . Hence, we have $(f|A)^{-1}(V) = f^{-1}(V) \cap A \in \beta^* \in O(A)$. Thus, it follows that $f|A$ is β^* -continuous.

Proposition 3.12.

Let $(X, \tau) \rightarrow (Y, \sigma)$ be a function and $\{G_i: i \in I\}$ be a cover of X by δ -open sets of (X, τ) .

If $f|G_i: (G_i, \tau|G_i) \rightarrow (Y, \sigma)$ is β^* -continuous for each $i \in I$, then f is β^* -continuous.

Proof.

Let V be an open set of (Y, σ) . Then by hypothesis

$$f^{-1}(V) = X \cap f^{-1}(V) = \bigcup \{G_i \cap f^{-1}(V): i \in I\} = \bigcup \{(f|G_i)^{-1}(V): i \in I\}.$$

Since $f|G_i$ is β^* -continuous for each $i \in I$, then $(f|G_i)^{-1}(V) \in O(G_i)$ for each $i \in I$. By Proposition 3.11, we have $(f|G_i)^{-1}(V)$ is β^* -continuous in X . Therefore, f is β^* -continuous in (X, τ) .

Theorem 3.13.

The set of all points x of X at which a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is not β^* -continuous is identical with the union of the β^* -frontiers of the inverse images of open sets containing $f(x)$.

Proof.

Necessity. Let x be a point of X at which f is not β^* -continuous. Then, there is an open set V of Y containing $f(x)$ such that $U \cap (X \setminus f^{-1}(V))$

is not ϕ , for every $U \in \beta^*O(X)$ containing x . Thus, we have $x \in \beta^* \text{-cl}(X \setminus f^{-1}(V)) = X \setminus \beta^* \text{-int}(f^{-1}(V))$ and $x \in f^{-1}(V)$. Therefore, we have $x \in \beta^* \text{-Fr}(f^{-1}(V))$ is open set containing $f(x)$. *Sufficiency.* We assume that f is β^* -continuous at $x \in X$. Then there exists $U \in \beta^*O(X)$ containing x such that $f(U) \subseteq V$. Therefore, we have $x \in U \subseteq f^{-1}(V)$ and hence $x \in \beta^* \text{-int}(f^{-1}(V)) \subseteq X \setminus \beta^* \text{-Fr}(f^{-1}(V))$. This is a contradiction. This means that f is not β^* -continuous at x .

The following implications are hold for a topological space X .

Lemma 3.14.

A function $f: X \rightarrow Y$ has a (β^*, τ) -graph if and only if for each $(x, y) \in X \times Y$ such that y is not equal to $f(x)$, there exist a β^* -open set U and an open set V containing x and y , respectively, such that $f(U) \cap V = \phi$.

Proof.

Trivially follows readily from the above definition.

Theorem 3.15.

If $f: X \rightarrow Y$ is a β^* -continuous function and Y is Hausdorff, then f has a (β^*, τ) -graph.

Proof.

Let $(x, y) \in X \times Y$ such that y is not equal to $f(x)$. Then there exist open sets U and V such that $y \in U$, $f(x) \in V$ and $V \cap U = \phi$. Since f is β^* -continuous, there exists β^* -open W containing x such that $f(W) \subseteq V$. This implies that $f(W) \cap U \subseteq V \cap U = \phi$. Therefore, f has a (β^*, τ) -graph.

Theorem 3.16.

If $f: (X, \tau) \rightarrow (Y, \sigma)$ has a (β^*, τ) -graph, then $f(K)$ is closed in (Y, σ) for each subset K which is β^* -compact relative to (X, τ) .

Proof.

Suppose that y is not in $f(K)$. Then (x, y) is not in $G(f)$ for each $x \in K$. Since $G(f)$ is (β^*, τ) -graph, there exist a β^* -open set U containing x and an open set V of Y containing y such that $f(U) \cap V = \phi$. The family $\{U_x: x \in K\}$ is a cover of K by β^* -open sets. Since K is β^* -compact relative to (X, τ) , there exists a finite subset K_0 of K such that $f(K)$ is closed in (Y, σ) .

Theorem 3.17.

If $f: (X, \tau) \rightarrow (Y, \sigma)$ is a β^* -continuous injection and (Y, σ) is T_i , then (X, τ) is β^* - T_i , where $i = 0, 1, 2$.

Proof.

We prove that the theorem for $i = 1$. Let Y be T_1 and x, y be distinct points in X . There exist open subsets U, V in Y such that $f(x) \in U$, $f(y) \in V$ and $f(x) \neq f(y)$. Since f is β^* -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are β^* -open subsets of X such that $x \in f^{-1}(U)$, $y \in f^{-1}(V)$. Hence, X is β^* - T_1 . $K \subseteq \bigcup \{U_x : x \in K_0\}$. Let $V = \bigcap \{V_x : x \in K_0\}$. Then V is an open set in Y containing y .

Therefore, we have $f(K) \cap V \subseteq (U_{x \in K_0} f(U_x)) \cap V \subseteq U_{x \in K_0} (f(U_x)) \cap V = \emptyset$. It follows that, y is not in $\text{cl}(f(K))$. Therefore, $f(K)$ is closed in (Y, σ) .

Corollary 3.18.

If $f: (X, \tau) \rightarrow (Y, \sigma)$ is β^* -continuous function and Y is Hausdorff, then $f(K)$ is closed in (Y, σ) for each subset K which is β^* -compact relative to (X, τ) .

Theorem 3.19.

If $f: X \rightarrow Y$ is a β^* -continuous function and Y is a Hausdorff space, then f has a (β^*, τ) -graph.

Proof.

Let $(x, y) \in X \times Y$ such that y is not in $f(x)$ and Y be a Hausdorff space. Then there exist two open sets U and V such that $y \in U$, $f(x) \in V$ and $V \cap U = \emptyset$. Since f is β^* -continuous, there exists a β^* -open set W containing x such that $f(W) \subseteq V$. This implies that $f(W) \cap U \subseteq V \cap U = \emptyset$. Therefore, f has a (β^*, τ) -graph.

Corollary 3.20.

If $f: X \rightarrow Y$ is β^* -continuous and Y is Hausdorff, then $G(f)$ is β^* -closed in $X \times Y$.

Theorem 3.21.

If $f: X \rightarrow Y$ has a (β^*, τ) -graph and $g: Y \rightarrow Z$ is a β^* -continuous function, then the set $\{(x, y) : f(x) = g(y)\}$ is β^* -closed in $X \times Y$.

Proof.

Let $A = \{(x, y) : f(x) = g(y)\}$ and (x, y) is not in A . We have $f(x) \neq g(y)$ and then $(x, g(y)) \in (X \times Z) \setminus G(f)$. Since f has a $(\beta^*,$

$\tau)$ -graph, then there exist a β^* -open set U and an open set V containing x and $g(y)$, respectively such that $f(U) \cap V = \emptyset$. Since g is a β^* -continuous function, then there exist an β^* -open set G containing y such that $g(G) \subseteq V$. We have $f(U) \cap g(G) = \emptyset$. This implies that $(U \times G) \cap A = \emptyset$. Since $U \times G$ is β^* -open, then $(x, y) \notin \beta^*\text{-cl}(A)$. Therefore, A is β^* -closed in $X \times Y$.

Theorem 3.22.

If $f: X \rightarrow Y$ is a β^* -continuous function and Y is Hausdorff, then the set $\{(x, y) \in X \times X : f(x) = f(y)\}$ is β^* -closed in $X \times X$.

Proof.

Let $A = \{(x, y) : f(x) = f(y)\}$ and let $(x, y) \in (X \times X) \setminus A$. Then $f(x) \neq f(y)$. Since Y is Hausdorff, then there exist open sets U and V containing $f(x)$ and $f(y)$, respectively, such that $U \cap V = \emptyset$. But, f is β^* -continuous, then there exist β^* -open sets H and G in X containing x and y , respectively, such that $f(H) \subseteq U$ and $f(G) \subseteq V$. This implies $(H \times G) \cap A = \emptyset$. By Theorem 3.21, we have $H \times G$ is a β^* -open set in $X \times X$ containing (x, y) . Hence, A is β^* -closed in $X \times X$.

Theorem 3.23.

If $f: (X, \tau) \rightarrow (Y, \sigma)$ is β^* -continuous and S is closed in $X \times Y$, then $v_x(S \cap G(f))$ is β^* -closed in X , where v_x represents the projection of $X \times Y$ onto X .

Proof.

Let S be a closed subset of $X \times Y$ and $x \in \beta^*\text{-cl}(v_x(S \cap G(f)))$. Let $U \in \tau$ containing x and $V \in \sigma$ containing $f(x)$. Since f is β^* -continuous, by Theorem 3.21, $x \in f^{-1}(V) \subseteq \beta^*\text{-int}(f^{-1}(V))$. Then $U \cap \beta^*\text{-int}(f^{-1}(V)) \cap v_x(S \cap G(f))$ contains some point z of X . This implies that $(z, f(z)) \in S$ and $f(z) \in V$. Thus we have $(U \times V) \cap S \neq \emptyset$ and hence $(x, f(x)) \in \text{cl}(S)$. Since A is closed, then $(x, f(x)) \in S \cap G(f)$ and $x \in v_x(S \cap G(f))$. Therefore $v_x(S \cap G(f))$ is β^* -closed in (X, τ) .

Theorem 3.24.

If (X, τ) is a β^* -connected space and $f: (X, \tau) \rightarrow (Y, \sigma)$ has a (β^*, τ) -graph and β^* -continuous function, then f is constant.

Proof.

Suppose that f is not constant. There exist disjoint points $x, y \in X$ such that $f(x) = f(y)$. Since $(x, f(x))$ is not in $G(f)$, then $y \neq f(x)$,

hence, there exist open sets U and V containing x and $f(x)$ respectively such that $f(U) \cap V = \emptyset$. Since f is β^* -continuous, there exist a β^* -open sets G containing y such that $f(G) \subseteq V$. U and V are disjoint β^* -open sets of (X, τ) , it follows that (X, τ) is not β^* -connected. Therefore, f is constant.

Conclusions

In the present paper, we have studied various notions of continuity in general topological spaces. We have introduced and studied the notions of β^* -open sets, β^* -continuous functions and (β^*, τ) -graph by utilizing the notion of β^* -open sets. Also, some characterizations and properties of these notions have been investigated.

Conflicts of interest

Authors declare no conflict of interest.

References

- [1] Achieng OE, Odongo D, Okelo NB. On Certain Properties of Identification Topological Subspaces. *Int J Mod Comput Inf Commun Technol* 2018;3(11):238-240.
- [2] Amudhambigai B, Revathi GK, Hemalatha T, On Strongly b - d- Continuous M-Set Functions. *Indian Streams Research Journal* 2016;6(8):21-28
- [3] Andrijevic D. On b-open sets, *Mat Vesnik* 1996;48:59-64.
- [4] Andrijevic V. Semi-preopen sets. *Mat Vesnik* 1986;38:24-32.
- [5] Brooks F. Indefinite cut sets for real functions. *Amer Math Monthly* 1971;78: 1007-10.
- [6] Chang CL. Fuzzy topological spaces. *J Math Anal Appl* 1968;24:182-90.
- [7] Csaszar A. Generalized open sets. *Acta Math Hungar* 1997;75(2):65-87.
- [8] Dontchev J, Przemski M. On the various decompositions of continuous and some weakly continuous. *Acta Math Hung* 1996; 71(1):109-20.
- [9] Maheshwari SN, Prasad R. On ROs-spaces, *Portugal Math* 1975;34:213-17.
- [10] Maji PK, Biswas R, Roy PR. Fuzzy soft sets. *J Fuzzy Math* 2009;9:589-602.
- [11] Ogata H Operations on Topological Spaces and Associated Topology. *Math Japonila* 1991;36(1):175-84.
- [12] Okelo NB. On characterization of various finite subgroups of Abelian groups, *Int J Mod Comp Info and Com Technol*, 2018; 1(5):93-98.
- [13] Okelo NB. Theoretical Analysis of Mixed-effects Models with minimized Measurement Error, *Int J Math Soft Comp* 2018;8(1):55-67.
- [14] Okelo NB. Certain properties of Hilbert space operators, *Int J Mod Sci Technol* 2018;3(6):126-32.
- [15] Okelo NB. Certain Aspects of Normal Classes of Hilbert Space Operators. *Int J Mod Sci Technol* 2018;3(10):203-7.
- [16] Okelo NB. Characterization of Numbers using Methods of Staircase and Modified Detachment of Coefficients. *Int J Mod Comput Inf Commun Technol* 2018;1(4):88-92.
- [17] Okelo NB. On Characterization of Various Finite Subgroups of Abelian Groups. *Int J Mod Comput Inf Commun Technol* 2018; 1(5):93-98.
- [18] Okelo NB. On Normal Intersection Conjugacy Functions in Finite Groups. *Int J Mod Comput Inf Commun Technol* 2018;1(6):111-15.
- [19] Okwany I, Odongo D, Okelo NB. Characterizations of Finite Semigroups of Multiple Operators. *Int J Mod Comput Inf Commun Technol* 2018;1(6):116-20.
- [20] Ramesh R, Mariappan R. Generalized open sets in Hereditary Generalized Topological Spaces *J Math Comput Sci* 2015;5(2):149-59.
- [21] Saha S. Local connectedness in fuzzy setting. *Simon Stevin* 1987;61:3-13.
- [22] Sanjay M. On α - τ -Disconnectedness and α - τ -connectedness in Topological spaces. *Acta Scientiarum Technol* 2015;37:395-399.
- [23] Shabir M, Naz M. On soft topological spaces. *Comput Math Appl* 2011;61:1786-99.
- [24] Vijayabalaji S, Sathiyaseelan N. Interval Valued Product Fuzzy Soft Matrices and

- its Application in Decision Making. *Int J Mod Sci Technol* 2016;1(7):159-63.
- [25] Wanjara AO, Okelo NB, Ongati O. On Characterization of Very Rotund Banach Spaces. *Int J Mod Comput Inf Commun Technol* 2018;1(5):99-102.
