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Abstract

In the present paper, we introduce and study the notions of B*-open sets, p*-continuous functions and
(B*, 1)-graph by utilizing the notion of *-open sets. Also, some characterizations and properties of

these notions are investigated.
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Introduction

Studies of properties of sets and
functions on topological spaces are of interest to
many researchers and mathematicians (see [1-
11] and the references therein). In [12-16] the
authors introduced the notion of 3-open sets and
B-continuity in topological spaces. Moreover, in
[17-21] the authors introduced o&-preopen sets
and d-almost continuity. The concepts of Z*-
open set and Z*-continuity introduced by [22].
The purpose of this work is to introduce and
study the notions of B*-open sets, B*-continuous
functions and (B*, t)-graph by utilizing the
notion of p*-open sets. Also, some
characterizations and properties of these notions
are investigated. Throughout this paper (X, 1)
and (Y, o) (simply, X and Y) represent
topological spaces on which no separation
axioms are assumed unless otherwise mentioned.
For a subset A of a space (X, 1), cl(A), int(A)
and X\A denote the closure of A, the interior of
A and the complement of A, respectively. A
subset A of a topological space(X, 1) is called
regular open (resp. regular closed) [23] if
A=int(cl(A)) (resp. A=cl(int(A))).

A point x of X is called d-cluster [24]
point of A if int(cl(U))NA=g, for every open set
U of X containing X. The set of all §-cluster
points of A is called o&-closure of A and is
denoted cl6(A).A set A is 6-closed if and only if
A=cl3(A). The complement of a 5-closed set is

said to be d-open [25]. The é-interior of a subset
A of X is the union of all 5-open sets of X
contained in A. A subset A of a space X is
called: (i). a-open [5] if Acint(cl(intd(A))), (ii).
a-open [15] if Acint(cl(int(A))), (iii). preopen
[11] if Acint(cl(A)), (iv). o-preopen [17] if
Acint(clé(A)), (v). o-semiopen [16] if
Accl(into(A)),  (vi).  Z-open  [10] if
Accl(intd(A))vint(cl(A)) (vii). y-open [9] or b-
open [3] or sp-open [4] if
Accl(int(A))vint(cl(A)), (viii). e-open [6] if
Accl(intd(A))uint(cld(A)), (ix). Z*-open [13] if
Accl(int(A))vint(cld(A)), (x). p-open [1] or
semi-preopen [2] if Accl(int(cl(A))) and, (xi).
e*-open [7] if  Accl(int(clé(A))). The
complement of an a-open (resp. a-open, o-
semiopen, o-preopen, Z-open, y-Open, e-open,
Z*-open, -open, e*-open) sets is called a-closed
[5](resp. a-closed [15], &-semi-closed [16], &-
pre-closed[17], Z-closed [10], y-closed [3], e-
closed [6], Z*-closed[13], B-closed [1], e*-
closed [7]). The intersection of all d-preclosed
(resp. B-closed) set containing A is called the &-
preclosure (resp. B-closure) of A and is denoted
by &-pcl(A) (resp. B-cl(A)).

The union of all -preopen (resp. 3-open)
sets contained in A is called the &-pre-interior
(resp. B-interior) of A and is denoted by o-
pint(A) (resp. B-int(A)). The family of all 5-open
(resp. d6-semiopen, O-preopen, Z*-open, -open,
e*-open) sets is denoted by o60(X) (resp.
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3SO(X), dPO(X), Z*O(X), PO(X), e*O(X)). Let
A be a subset of a topological space (X, t). Then
(). o-pint(A)=ANint(cld(A)) and o&-pcl(A)=AuU
cl(intd(A)) and (ii). P-int(A)=ANcl(int(cl(A)))
and B-cl(A)=Auint(cl(int(A))).

Research methodology
Definition 2.1.

A subset A of a topological space(X, 1) is
said to be: (i). a p*-open set if Accl(int(cl(A)))U
int(cl6(A)) and (ii)) a pP*-closed set if
int(cl(int(A)))Ncl(intd(A))SA. The family of all
B*-open (resp. P*-closed) subsets of a
topological space (X, t) will be as always
denoted by B*O(X) (resp. p*C(X)).

Definition 2.2.

Let (X, 1) be a topological space. Then
(i). The union of all B*-open sets of contained in
A is called the B*-interior of A and is denoted by
B*-int(A) and (ii). The intersection of all p*-
closed sets of X containing A is called the p*-
closure of A and is denoted byp*-cl(A).

Definition 2.3.

A function f: (X, 1) — (Y, o) is called
p*-continuous if (V) is p*-open in X, for each
V Eo.

Definition 2.4.

A function f: (X, 1) — (Y, o) is called
super-continuous [14] (resp. a-continuous [5], a-
continuous [12], pre-continuous [11], &-semi-
continuous[8], Z-continuous [10], y-continuous
[9], e-continuous[6], Z*-continuous [13], B-
continuous [1], e*-continuous[7]) if (V) is &-
open (resp. a-open, «o-Open, per open,d-
semiopen, Z-open, y-open, e-open, Z*-open, -
open,e*-open) in X, for each V € o.

Example 2.5.

Let X={a, b, ¢, d} with topology T = {0,
{a}, {c}, {a, b}, {a c}, {a b, c}, {a c, d}, X}
Then the function f: (X, 1) — (X, 1) defined by
f(@) = a, f(b) = f(c) = ¢ and f(d) = d is pB*-
continuous but it is not [-continuous. The
function f: (X, 1) — (X, 1) defined by f(a) = d,
f(b) = a, f(c) = ¢ and f(d) = b is e*-continuous
but it is not p*-continuous.

Example 2.6.

Let X = {a, b, c, d, e} with topology T =
{0, {a, b}, {c, d}, {a, b, c, d}, X}. Then the
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function f: (X, 1) — (X, 1) defined by f(a) = a,
f(b) = e, f(c) = ¢, f(d) = d and f(e) = b is p*-
continuous but it is not Z*-continuous.

Remark 2.7

(i). If AedO(X) and BeB*O(X), then
ANBER*O(X), (ii). Let A and B be two subsets
of a space (X,1). If A€d0O(X) and BeB*O(X),
then ANBEB*O(A) and ANBEBR*O(X).

Definition 2.8.

The PB*-frontier of a subset A of X,
denoted by B*-Fr(A), is defined by p*-Fr(A)=p*-
cl(A)NP*-cl(X\A) equivalently B*-Fr(A)=p*-
cl(A)\B*-int(A).

Definition 2.9.

A function f: X — Y has a (B*, 1)-graph
if for each (X, y)e(XxXY)\G(f), there exist a B*-
open U of X containing x and an open set VV of Y
containing y such that (UxV)NG(f) =¢.

Definition 2.10.

A topological space (X, 7) is said to be
B*-connected if it is not the union of two
nonempty disjoint B*-open sets.

Definition 2.11.

A space X is said to be B*-compact if every f*-
open cover of X has a finite subcover.

Results and discussion

In this section we give the results of our
study. We begin with characterizations of [*-
Open sets.

Theorem 3.1.

Let (X, 1) be a topological space. Then
the following hold. (i). The arbitrary union of
B*-open sets is P*-open. (ii). The arbitrary
intersection of B*-closed sets is p*-closed.

Proof.

(). Let {Ai: i€l} be a family of B*-open
sets. Then Accl(int(cl(Ai)))vint(clo(A;j)) and
hence
UiAicUi(cl(int(cl(Ay)))uint(cld(A;))) cl(int(cl(U;
A)))uint(cld(UiA))), for all i€l. Thus, UiAjis B*-
open. The proof of (ii) follows from (i).

Remark 3.2.

By the following next example we show
that the intersection of any two B*-open sets is
not B*-open.
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Example 3.3.

Let X = {a, b, ¢} with topology t = {0,
{a}, {b}, {a, b}, X}. Then A ={a, c} and B =
{b, c} are B*-open sets. But, ANB = {c} is not
B*-open.

Theorem 3.4.

Let A, B be two subsets of a topological
space (X, 1). Then the following hold: (i). p*-
cl(X) = X and p*-cl(p) = o, (ii). A € B*-cl(A),
(iii). If A < B, then p*-cl(A) < p*-cl(B), (iv) x €
B*-cl(A) if and only if for each a B*-open set U
containing X, U N A /=g, (v). A'is B*-closed set
if and only if A = B*-cl(A), (vi). p*-cl(B*-cl(A))
= B*-cl(A), (vii). p*-cl(A) U p*-cl(B) < p*-cl(A
U B), (viii). B*-cl(A N B) € B*-cl(A) N p*-
cl(B).

Proof.

The other conditions hold by definition.
To prove (vi), by using (ii) and A € B*-cl(A), we
have B*-cl(A) < B*-cl(B*-cl(A)). Let x € B*-
cl(B*-cl(A)). Then, for every P*-open set V
containing X, V N B*-cl(A) /= ¢.

Example 3.5.

Let X = {a, b, ¢, d} with topology t = {0,
{a}, {c}, {a b}, {a c}, {a b, c}, {a c, d}, X}
and consider y € V N B*-cl(A). Then, for every
B*-open set G containing y, A N G /= ¢. Since V
is a B*-open set, y € V and A NV /=g, then X €
B*-cl(A). Therefore, p*-cl(B*-cl(A)) < B*-cl(A).

Theorem 3.6.

For a subset A in a topological space (X,
1), the following statements are true: (i). p*-
cl(X\A) = X\B*-int(A) and (ii). p*-int(X\A) =
X\p*-cl(A).

Proof.

Follows from the fact the complement of
B*-open set is a P*-closed and Ni(X\A) =
X\UiAi.

Theorem 3.7.

Let A be a subset of a topological
space(X, 1). Then the following are equivalent:
(). A is a p*-open set and (ii). A = B-int(A) U
pinto(A).

Proof.

(i)=(ii). Let A be a p*-open set. ThenA <
cl(int(cl(A))) U int(cl5(A)) and hence,
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A < (A N cl(int(cl(A)))) U (A N int(cld(A))) =
B-int(A) U pintd(A) € A.
(in)=(i). Trivial.

Theorem 3.8.

For a subset A of space (X, t).Then
thefollowing are equivalent: (i). A is a p*-closed
set and (ii) A = B-cl(A) N pcld(A).

Proof.
Follows from Theorem 3.7.
Theorem 3.9.

Let f: (X, 1) —(Y, o) be a function. Then
the following statements are equivalent: (1) f is
B*-continuous, (2) For each x € X and V € ¢
containing f(x), there exists U € B*O(X)
containing x such that f(U) < V, (3) The inverse
image of each closed set in Y is *-closed in X,
(4) int(cl(int(F*(B)))) N cl(intd(f*(B))) < f
Y(cl(B)),for each B < Y, (5) f(int(B))
cl(int(cl(F*(B)))) U int(cl5(f*(B))),for each B
Y, (6) p*-cl(f*(B)) < f'(cl(B)), for each B
Y, (7) f(B*-cl(A)) < cl(f(A)), for each A < X,(
£1(int(B)) < p*-int(f*(B)), foreachB C Y.

Proof.

L inin N

(1)e(2) and (1)<(3) are obvious.
(3)=(4). Let B € Y. Then by (3) f *(cI(B)) is B*-
closed.

This means f(cl(B)) 2 int(cl(int(f *(cl(B)))))N
cl(intd(f *(cl(B)))) 2 int(cl(int(f *(B))))
Nel(ints(f1(B))).

(4)=(5). By replacing Y\B instead of B in (4),
we have

intcl(int(F*(Y\B))))  Ncl(ints(F 1(Y\B))) ¢
f1(cl(Y\B)).
Therefore, f(int(B)) < cl(int(cl(f }(B))))u

int(cl3(f 1(B))), foreach B C .

(5)=(1). Obvious.

(3)=(6). Let B € Y and f (cl(B)) be p*-closed
in X. Then p*-cl(f }(B)) < p*-cl(f *(cI(B))) =
f(cl(B)).

(6)=(7). Let A < X. Then f(A) € Y. By (6), we
have f(cI(f(A))) 2 p*-cl(f *(f(A))) 2 B*-cl(A).
Therefore, cl(f(A)) 2 f (cl(f(A))) 2 f(B*-cl(A)).
(7)=(3). Let F € Y be a closed set. Then,f *(F) =
f1(cl(F)). Hence by (7).f(B*-cl(F}(F))) < cl(f
(FY(F))) € (F) = F, thus, p*-cl(f *(F)) < f(F),
so, f1(F) = B*-cl(f*(F)). There-fore, f*(F) €
B*C(X).

(1)=(8). Let B € Y. Then f (int(B)) is p*-open
in X. Thus, f(int(B)) = p*-int(f *(int(B))) S p*-
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int(f *(B)). Therefore,
int(f }(B)).

(8)=(1). Let U C Y be an open set. Thenf *(U) =
f1(int(U)) € p*-int(f }(V)). Hence, f1(U) isp*-
open in X. Therefore, f is p*-continuous.

Remark 3.10.

If f: X — Y is a p*-continuous and g: Y
— Z is a continuous, then the composition g ° f:
X — Zis p*-continuous.
Next, we consider some properties and
separation axioms. We state the following
propositions.

fiint(B) < p*-

Proposition 3.11.

If f: (X, 1) — (Y, o) is a p*-continuous
function and A is d-open in X, then the
restriction given by NA:(A, TA) — (Y, o) is p*-
continuous.

Proof.

Let V be an open set of Y. Then by
hypothesis (V) is B*-open in X. Hence, we
have (RA) (V) = f1 (V) N A B* € O(A). Thus, it
follows that f\A is B*-continuous.

Proposition 3.12.

Let (X, 1) — (Y, o) be a function and
{G;j: i € I} be a cover of X by 6-open sets of (X,
7).
If A\Gi: (Gi,tei)—(Y, o) is p*-continuous for
each i € I, then f is p*-continuous.

Proof.

Let V be an open set of (Y, ). Then by
hypothesis
flv)=xXnfiv)=u{Gnft(V):iel}=u
{AG) (V):i€l}.

Since f\G; is p*-continuous for each i € I, then
AG)H V) € YO(G)for each i € I. By
Proposition 3.11, we have (RG)*(V) isp*-
continuous in X. Therefore, f is f*-continuous
in(X, 7).

Theorem 3.13.

The set of all points x of X at which a
function f: (X, 1) — (Y, o) is not f*-continuous

is identical with the union of the B*-frontiers of
the inverse images of open sets containing f(x).

Proof.

Necessity. Let x be a point of X at which
f is not B*-continuous. Then, there is an open set
V of Y containing f(x) such that U N (X\f*(V))
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is not ¢, for every U € B*O(X) containing X.
Thus, we have x € p*-cl(X\f*(V)) = X\B*-int(f
1(V)) and x € f*(V).Therefore, we have x € p*-
Fr(f'(V)) is open set containing f(x). Sufficiency.
We assume that f is p*-continuous at x € X.
Then there exists U € p*O(X) containing x such
that f(U) < V. Therefore, we have x € U € f
(V) and hence x € B*-int(F'(V)) € X\p*-Fr(f
(V). This is a contradiction. This means that f
is not B*-continuous at Xx.

The following implications are hold fora
topological space X.

Lemma 3.14.

A function f: X — Y has a has a (B*, 1)-
graph if and only if for each (x, y) € X x Y such
that y is not equal to f(x), there exist a B*-open
set U and an open set V containing x and v,
respectively, such that f(U) NV = .

Proof.

Trivially follows readily from the above
definition.

Theorem 3.15.

If f: X — Y is a p*-continuous function
and Y is Hausdorff, then f has a (B*, t)-graph.

Proof.

Let (x, y) € X x Y such that y is not
equal to f(x). Then there exist open sets U and V
such thaty € U, f(x) € Vand V N U = ¢. Since f
is P*-continuous, there exists p*-open W
containing x such that f(W) < V. This implies
that f(W) N U € V N U = ¢. Therefore, f has a

(B*, ©)-graph.
Theorem 3.16.

If f: (X, 1) — (Y, o) has a (B*, 1)-graph,
then f(K) is closed in (Y, o) for each subset K
which is p*-compact relative to (X, 1).

Proof.

Suppose that y is not in f(K). Then (x, y)
is not in G(f) for each x € K. Since G(f) is (B*,
T)-graph, there exist a f*-open set U containing x
and an open set VV of Y containing y such that
f(U) N V= ¢. The family {Uy: x € K} is a cover
of K by B*-open sets. Since K is B*-compact
relative to (X, 1), there exists a finite subset Ky
of K such that f(K) is closed in (Y, o).
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Theorem 3.17.

If f: (X, 1) —(Y, o) is a p*-continuous
injection and (Y, o) is T, then (X, 1) is B*-T;,
wherei=0, 1, 2.

Proof.

We prove that the theorem for i = 1. Let
Y be T; and X, y be distinct points in X. There
exist open subsets U, V in Y such that f(x) € U,
f(y) is not in U, f(x) is not in V and f(y) € V.
Since f is p*-continuous, f*(U) and f (V) are
p*-open subsets of X such that x € f1(U), y is
not in f1(U), x is not in f (V) and y € f (V).
Hence, X is f*-T;. K € U {Uyx: x € KO}. Let V
=N {Vx X € Ko}. Then V is an open set in Y
containing y.
Therefore, we have f(K) NV € (Ux eko T (Ux)) N
V € Uxeko(f (Uy)) NV = o. It follows that, y is
not in cl(f(K)). Therefore, f(K) is closed in(Y, o).

Corollary 3.18.

If f: (X, 1) — (Y, o) is p*-continuous
function and Y is Hausdorff, then f(K) is closed
in (Y, o)for each subset K which is p*-compact
relative to (X, 1).

Theorem 3.19.

If f: X — Y is a f*-continuous function
and Y is a Hausdorff space, then f has a (B*, 1)-
graph.

Proof.

Let (x, y) € X x Y such that y is not in
f(x) and Y be a Hausdorff space. Then there
exist two open sets U and V such that y € U, f(x)
€ Vand V N U = ¢. Since f is f*-continuous,
there exists a f*-open set W containing X such
that f(W) < V. This implies that f(W) N U € V
N U = ¢. Therefore, f has a (B*, t)-graph.

Corollary 3.20.

If f: X — Y is B*-continuous and Y is
Hausdorff, then G(f) is *-closed in X x Y.

Theorem 3.21.

If f: X — Y has a (B*, t)-graph and g: Y
— Z is a pB*-continuous function, then the set
{(x, y):f(x) = g(y)} is p*-closed in X x Y.
Proof.

Let A={(x,y): f(x) = g(y)} and (x, y) is
not in A. We have f(x) is not equal to g(y) and
then (x, g(y)) € (X x 2)\G(f). Since f has a (B*,
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T)-graph, then there exist a f*-open set U and an
open set V containing x and g(y), respectively
such that f(U) N V = ¢. Since g is a P*-
continuous function, then there exist an B*-open
set G containing y such that g(G) € V. We have
f(U) N g(G) = ¢. This implies that (U x G) N A
= ¢. Since U x G is B*-open, then (x, y) /€ p*-
cl(A). Therefore, A is f*-closed in X X Y.
Theorem 3.22.

If f: X — Y is a p*-continuous function
and Y is Hausdorff, then the set {(x, y) € X x X:
f(x) = f(y)} is p*-closed in X x X.

Proof.

Let A = {(x, y): f(x) = f(y)} and let(x, y)
€ (X x X)\A. Then f(x) is not equal to f(y). Since
Y is Hausdorff, then there exist open sets U and
V containing f(x) and f(y), respectively, such
that U N V = ¢. But, f isp*-continuous, then
there exist B*-open sets H and Gin X containing
x and vy, respectively, such that f(H) € U and
f(G) < V. This implies (H x G) N A = ¢. By
Theorem 3.21, we have H x G is a B*-open set in
X x X containing(x, y). Hence, A is B*-closed in
X% X,

Theorem 3.23.

If f: (X, 1) — (Y, o) is B*-continuous and
Sis closed in X x Y, then v(S N G(f)) is p*-
closed in X, where vy represents the projection of
X xY onto X.

Proof.

Let S be a closed subset of X x Y and x €
B*-cl (vx(S N G(f))). Let U € t containing X and
V € o containing f(X). Since f is f*-continuous,
by Theorem 3.21, x € (V) € B*-int(f }(V)).
Then U N B*-int(F1(V)) N v (S N G(f)) contains
some point z of X. This implies that (z, f(z)) € S
and f(z) € V. Thus we have (U x V) N S /= ¢
and hence (x, f(x)) € cl(S). Since A is closed,
then (x, f(X)) € S N G(f) and x € v (S N
G(f)).Therefore vi(S N G(f)) is B*-closed in (X,
7).
Theorem 3.24.

If (X, 1) is a p*-connected space and f:
(X, 1) — (Y, o) has a (p*, t)-graph and pB*-
continuous function, then f is constant.

Proof.

Suppose that f is not constant. There exist
disjoint points X, y € X such that f(x) = f(y).
Since (x, f(x)) is not in G(f), then y /= f(x),
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hence, there exist open sets U and V containing
x and f(x) respectively such that f(U) NV = o.
Since f is B*-continuous, there exist a f*-open
sets G containing y such that f(G) € V. U and V
are disjoint B*-open sets of (X, 1), it follows that
(X, 1) is not P*-connected. Therefore, f is
constant.

Conclusions

In the present paper, we have studied various
notions of continuity in general topological
spaces. We have introduced and studied the
notions of B*-open sets, f*-continuous functions
and (B*, 1)-graph by utilizing the notion of *-
open sets. Also, some characterizations and
properties of these notions have been
investigated.
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