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Abstract 

In the present paper, we have studied a (α,α)-symmetric derivations D on semiprime rings and prime 

rings R, we give some results when R admits a (α,α)-symmetric derivations D to satisfy some 

conditions on R.(i)D([x,y]n+1) =0 for all x, y∈ R. (ii) [D(xn+1),α(y)] = 0 for all x, y ∈R. (iii) 

[[D(x),α(x)],α(x)]= 0 for all x ∈R. Where α: R →R is an automorphism mapping. 
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Introduction 

Several researchers always ask why 

derivation?. Derivations on rings help us to 

understand rings better and also derivations on 

rings can tell us about the structure of the rings. 

For instance a ring is commutative if and only if 

the only inner derivation on the ring is zero. Also 

derivations can be helpful for relating a ring with 

the set of matrices with entries in the ring [1]. 

Derivations play a significant role in determining 

whether a ring is commutative, see [2], [3] and 

[4]. Derivations can also be useful in other 

fields. For example, derivations play a role in the 

calculation of the eigenvalues of matrices [5] 

which is important in mathematics and other 

sciences, business and engineering. Derivations 

also are used in quantum physics [7]. A lot of 

work has been done in this field [8, 9, 10].  

In [11] he was introduce the (α,α)-

derivation and α-commuting mapping in the 

following way: If [f(x),α(x)] = 0 for all x ∈R, 

then f is said to be α-commuting, where α is an 

automorphism. An additive map D: R→ R is 

said to be an (α,α)-derivation if 

D(xy)=D(x)α(y)+α(x)D(y).In [12] the authors 

studied the properties of Jordan (α,α)-derivation. 

Derivations are also generalized as α-derivations, 

(α,β)-derivations and have been applied in the 

solution of some functional equations [13] he 

was proved, let n ≥ 2 be a fixed positive integer 

and let R be a non-commutative n!-torsion free 

prime ring. Suppose that there exists a 

symmetric derivation Δ: R
n
→R such that the

trace δ of Δ is commuting on R. Then we have Δ 

= 0 [4]. In [5] they proved let N be a 2-torsion 

free 3-prime near-ring, D a symmetric bi-(s,τ )-

derivation of N and d the trace of D. If xd(N) = 0 

for all x ∈ N, then x = 0 or D = 0,where a near 

ring N is 3-prime if aNb = {0} implies that a= 0 

or b= 0,and a mapping D:N×N →N is said to be 

symmetric if D(x,y) =D(y,x) for all x,y ∈N. A 

mapping d: N →N denoted by d(x) =D(x,x) is 

called the trace of D where D:N×N→N is 

asymmetric mapping.  

Preliminaries 

Throughout, R is an associative 

semiprime ring. We shall write [x,y] for xy − yx. 

Then [xy,z]= x[y,z] + [x,z]y; [x,yz]=y[x,z]+ 

[x,y]z for all x, y,z ∈ R. Recall that R is prime if 

aRb=(0) implies a= 0 or b = 0 and semiprime if 

aRa=(0) implies a = 0. An additive mapping D 

from R in to itself is called a derivation if D(xy) 

= D(x)y + xD(y) for all x, y ∈R. A mapping f of 

R into itself is called commuting if [f(x), 

x]=0,and centralizing if [f(x),x] ∈Z(R) for all x ∈ 

R, Z(R) denotes the centre of R. An additive 

mapping F from R to R is said to be a 

commuting (resp. centralizing) if [F(x),x]=0 

(resp.[F(x),x] ∈Z(R)) holds for all x ∈R, and d is 
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said to be central if F(x) ∈Z(R) holds for all x 

∈R.  

More generally, for a positive integer n, 

we define a mapping F to be n-commuting if 

[F(x), xn] = 0 for all x ∈R. An additive (α,α)-

derivation D:R → R is called an (α, α)-

symmetric derivation on a ring R if D(xy) = 

D(yx) for all x,y ∈ R. The notion of a reverse 

derivation as an additive mapping d from a ring 

R into itself satisfying d(xy) = d(y)x+ yd(x),for 

all x, y ∈ R is known [8]. Obviously, if R is 

commutative, then both derivation and reverse 

derivation are the same. An additive map D:R → 

R is said to be an (α, α)-derivation if D(xy) = 

D(x)α(y)+α(x)D(y) for all x, y ∈ R. We shall 

need the following well-known and frequently 

used lemmas. 

Lemma 2.1 

Let R be a semiprime ring and D 

derivation of R,U a nonzero left ideal of R and 

rR(U)=0.If D is centralizing or skew-centralizing 

on U, then D(R) ∈Z(R) and the ideal generated 

by D(R) is in the Z(R)(see [2]). 

Lemma 2.2 

A mapping D on a semiprime ring R is a 

reverse derivation if and only if it is a central 

derivation (see [7]). 

Lemma 2.3 

Let R a ring and D be the (α, α)-

symmetric mapping on a ∈ R, then the following 

statements (see [5]) hold for all x, y ∈R. 

(i) D([x,y]) = D([y,x])= 0

(ii) D(x[x,y])= 0 = D([x,y]x)

(iii) D([x,y])2 = 0.

Remark 2.4 

If R is a ring with unity, Inv(R) is the set 

of all invertible elements of R, then (Inv(R),.) 

form a group. Let a ∈ Inv(R) then x → a−1xa is 

an automorphism, referred as inner 

automorphism, the collection Inv(R) forms 

subgroup of Aut(R). We denoted to the right 

annihilator ideal by rR(U)=0,whereU a nonzero 

left ideal of R. 

Results and discussion 

Theorem 3.1 

 Let R be a 2-torsion free ring and D an (α,α)-

symmetric derivation and α an automorphism 

such that [D(x),α(x)]=0 for all x ∈ R, then D is a 

reverse derivation. 

Proof 

By hypothesis [D(x),α(x)] = 0 for all x ∈R. 

Linearization gives [D(x),α(y)]=[α(x),D(y)] (1) 

Then [D(x),α(y)]= [D(y),α(x)] (2). Using (1) and 

(2), we get [D(y),α(x)]=[α(x),D(y)] implies that 

D(y)α(x)−α(x)D(y)= 0 this gives [D(y),α(x)] = 0 

for all x, y ∈R. Replacing x by α−1(w), we get 

[D(y),w] = 0 for all w, y ∈R. Hence D is a 

central mapping. Then according to Lemma 2.2., 

a mapping Don a semiprime ring R is a reverse 

derivation. 

Theorem 3.2 

Let R is a ring and D is an (α,α)-

symmetric mapping on a ring R, then 

D([x,y]n+1) =0 for all x, y∈R, where n is a 

positive integer. 

Proof 

We can prove the theorem with the help 

of mathematical induction. (i) When n=1, then 

we have D([x,y]2) =0, As D is an (α,α)- 

symmetric mapping on a ring R, so by D is an 

(α, α)- symmetric mapping on a ring R, we have 

D([x,y]) = D([y,x]) = 0 for all x, y ∈R. Then 

D([x,y]) = 0 for all x, y ∈R. Also 

D([x,y]2)=D([x,y])α([x,y])+α([x,y])D([x,y]).  

Since, we have D([x,y])=0 for all x, y 

∈R. Therefore, D([x,y]2) = 0. (ii) When n=m, 

then D([x,y]n+1) =0 for all x ∈ R. (iii) Suppose 

that true when n=m+1, then D([x,y]m+1) =0 for 

all x∈R. D([x,y]m [x,y]) =0. Then 

D([x,y]m)α([x,y])+α([x,y]m)D([x,y])=0.  

According to Lemma 2.3.(iii), we get 

α([x,y]m)D([x,y])=0. Again according D is an 

(α,α)-symmetric mapping on a ring R, we have 

D([x,y])m =0 for all x, y ∈R. Then by right 

multiplying by α([x,y]),we get D([x,y])m 

α([x,y])=0 for all x, y ∈R. Then from them 

relations, we get D([x,y])m α([x,y])+ 

α([x,y]m)D([x,y])=0 for all x, y ∈R. D([x,y])m 

=0 for all x, y ∈R. Right-multiplying by D([x,y]) 

for all x, y ∈R, leads to D([x,y])m+1 =0 for all x, 

y ∈R. This completes the proof. 

Theorem 3.3 

Let R is a prime ring and D be a (α,α)-

symmetric derivation on R, then either R is 

commutative or D is zero. 
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Proof 

 By Lemma2.3 (ii) D(x[x,y])= 0 implies 

that D(x)α([x,y]) +α(x)D([x,y])= 0 also in view 

of Lemma2.3(i), we have D(x)α([x,y]) = 0 for all 

x,y ∈ R. Further in view of Lemma2.3 (i), 

D([x,y]x)=0 gives α([x,y])D(x) = 0. Replacing y 

by yz in α([x,y])D(x) = 0, and using it again, we 

get α([x,y])α(z)D(x) = 0 (3). Replacing x by x + 

u in α([x,y])D(x) = 0, we get α([x,y])D(u) = 

α([y,u])D(x) for all x, y, u ∈ R (4)  

Pre multiplying (4) by α([x, y])D(u)v we get 

α([x,y])D(u)vα([x,y])D(u)=α([x,y])D(u)vα([y,u])

D(x). (5) Replacing z by α−1(D(u)vα([y,u])) in 

(3) and then using in (5), we get α([x,y])D(u)v 

α([x,y])D(u)= 0 for all x, y, u, v ∈ R. As R is a 

semiprime, therefore, α([x,y])D(u) = 0. 

Replacing y by yz in α([x,y])D(u) = 0, we get 

α([x,y])α(z)D(u) = 0. Replacing z by α−1(w), we 

get α([x, y])wD(u) = 0 for all x, y,w, u ∈R. As R 

is a prime ring, therefore either α([x,y])= 0 or 

D(u) = 0 for all x, y, u ∈R. By other word, we 

have D(u) = 0 for some u ∈R, or α([x,y]) = 0. 

That is ([x,y]) = 0 for all x, y ∈R and hence R is 

commutative or D is zero (α,α)- symmetric 

derivation on R. 

Theorem 3.4 

 Let R is a semiprime ring and D be an 

(α,α)-symmetric derivation on R, then [D(xn+1), 

α(y)] = 0 for all x,y ∈R, where n is a positive 

integer. 

Proof 

 Since D is an (α,α)-symmetric derivation, 

according to Lemma 2.4, replacing z by xz in 

D(x[y,z]) = 0 for all x,y,z∈R, and then using 

D(x[y,z]u) = 0 for all x,y,zÎR. Again replacing z 

by xz in the equation obtained and using 

D(x[y,z]u) = 0 for all x,y,zÎR, again, we have 

D(x3[y, z]) = 0. Continuing this process, we get 

D(xn+1[y,z]) = 0 for all x, y, z ∈ R. As D is an 

(α,α)-symmetric derivation, therefore D([y,z]x 

n+1) = 0 for all x, y, z ∈ R. D(xn+1[y,z]) = 0 for 

all x, y, z ∈R. In view of Lemma 2.3 (i), we get 

D(xn+1)α([y,z]) = 0. (6)  

As D be an (α,α)-symmetric derivation, 

therefore, D([y,z]xn+1) = 0. In view of 

Lemma2.3 (i), we have  

α([y,z])D(xn+1) = 0. (7) 

Subtracting (7) from (6), we get [D(xn+1), 

α([y,z])] = 0. Replacing z by yz and used again 

it, we get [D(xn+1), α(y)] α([y,z]) = 0. 

 

Theorem 3.5 

 Let R be a 2-torsion free semiprime ring, 

U a nonzero left ideal of R such that 

rR(U)=0,and α: R → R is an automorphism. If 

there exists an (α,α)-derivation D:R → R such 

that[[D(x),α(x)],α(x)]= 0 for all x∈U, then D(R) 

∈Z(R) and the ideal generated by D(R) is in the 

Z(R). 

Proof 

 At first, we define a mapping H (.,.): 

R×R → R by H(x,y)= [D(x),α(y)]+[D(y),α(x)] 

for all x∈ U, y ∈R. Then it is easy to see that 

H(x,y) = H(y,x) for all x∈ U, y, z ∈R, and 

additive in both arguments. By using the 

Jacobian identities and definition of H(x,y), we 

can conclude the following: 

H(xy,z)=H(x,z)α(y)+α(x)H(y,z)+D(x)[α(y),α(z)]

+[α(x),α(z)]D(y). (8) 

Define the mapping h:R→ R such that h(x)= 

H(x,x), then h(x)=2[D(x),α(x)]. (9) 

One can conclude h(x+y) = h(x)+h(y)+2H(x,y). 

By [[D(x),α(x)],α(x)]= 0,we have, [h(x),α(x)]= 0. 

Linearization of last equation gives 

[h(x),α(y)]+[h(y),α(x)]+2[H(x,y),α(x)]+2[H(x,y),

(y)]=0. (10). 

 Replacing x by −x in (10) and using the 

fact h(−x) = h(x), we get 

[h(x),α(y)]−[h(y),α(x)]+[2H(x,y),α(x)]−[2H(x,y),

α(y)]=0.(11). Adding (10) and (11) and using the 

fact that R is 2-torsion free, we get 

[h(x),α(y)]+2[H(x,y),α(x)]=0. (12) replacing z by 

zα−1D(xn+1) and again replacing z by 

α−1(w)w[α(y),D(xn+1)] = 0. As R is semiprime, 

therefore, we in the result obtained, we get 

[D(xn+1), α(y)]w[α(y),D(xn+1)] = 0. have 

[α(y),D(xn+1)] = 0 implies that [D(xn+1), α(y)] 

= 0 for all x, y ∈ R. This completes the proof. 

Corollary 3.6  

 Let D be an (α,α)-symmetric derivation 

on a semiprime ring R, such that [D(xn+1),α(y)] 

= 0 for all x,y ∈R, where n is a positive integer, 

then D(xn+1) is n+1-α-central (resp. n+1-α-

commuting) of R.  

Proof 

 Replacing y by xy in (12) and using 

H(x,y) = H(y,x), we get [h(x), 

α(x)α(y)]+2[H(xy,x), α(x)] = 0. In view of (8) 

and (9), the last expression becomes 

α(x)([h(x),α(y)]+2[H(x,y),α(x)])+2h(x)[α(y),α(x)

]+2[D(x), α(x)][α(y),α(x)]+2D(x)[[α(y), α(x)], 
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α(x)] =0. In view of (9) and (12), the last 

equation reduces to 

3h(x)[α(y),α(x)]+2D(x)[[α(y),α(x)],α(x)]=0. (13) 

Replacing y by yx in (12) then using (9), (12) 

and the fact that [h(x), α(x)] = 0,we get 

3[α(y),α(x)]h(x)+2[[α(y),α(x)],α(x)]D(x)=0. (14) 

Replacing y by yz in (13), we get  3h(x)[α(yz), 

α(x)]+2D(x)[[α(yz),α(x)]α(x)] = 3h(x)α(y)[α(z), 

α(x)]+3h(x)[α(y),α(x)]α(z)= 0. In view of (13) 

the last equation becomes 

3h(x)α(y)[α(z),α(x)]+4D(x)[α(y),α(x)][α(z),α(x)]

+ 2D(x)α(y)[[α(z),α(x)],α(x)]=0. (15) 

Putting y= α
−1

(D(x)), z = y and using (9) the last 

equation becomes: 

3h(x)D(x)[α(y),α(x)]+2D(x)h(x)[α(y),α(x)]+2(D(

x))2[[α(y),α(x)],α(x)]=0 (16) 

 Pre multiplying (13) by D(x) and 

subtracting from (16), we get 

(3h(x)D(x)−D(x)h(x))[α(y),α(x)]=0. (17). Post 

multiplying (17) by α(z), we get (3h(x)D(x)− 

D(x)h(x))[α(y),α(x)]α(z)=0. (18). Replacing y by 

yz in (17), we get 

(3h(x)D(x)−D(x)h(x))(α(y)[α(z),α(x)]+[α(y),α(x)

]α(z))=0. (19). Subtracting (18) from (19), we 

get {3h(x)D(x)−D(x)h(x)}α(y)[α(z),α(x)]=0. (20) 

Replacing z by α−1(2D(x)) and y by α−1(t) in 

(20), we get {3h(x)D(x)−D(x)h(x)}th(x)=0 for 

all x∈ U, y ,t ∈R (21). Multiplying (21) by 3D(x) 

and again replacing t by tD(x) in (21) and then 

subtracting, we get 

{3h(x)D(x)−D(x)h(x)}t{3h(x)D(x)−D(x)h(x)}= 

(22).  

 Semiprimeness of R implies that 

3h(x)D(x)−D(x)h(x) = 0. That is 3h(x)D(x) 

=D(x)h(x) (23). Now replacing y by zy in (14) 

and using (14) again and then putting y = 

α
−1

(D(x)) and z = y, we get 

3[α(y),α(x)]D(x)h(x)+2[α(y),α(x)]h(x)D(x)+2[[α

(y),α(x)],α(x)](D(x))2=0. (24). Post multiplying 

(14) by D(x) and using in (24), we get 

[α(y),α(x)](3D(x)h(x)−h(x)D(x))=0 (25). 

Replacing y by zy in (25) and using (25) again, 

we get [α(z), α(x)]α(y)(3D(x)h(x)− h(x)D(x)) = 

0. Replacing z by α
−1

(2D(x)) in the last equation 

and using (9), we get h(x)α(y)(3D(x)h(x)− 

h(x)D(x)) = 0 (26). Pre multiplying (24) by 

3D(x) and replacing y by α
−1

(t), we 

get3D(x)h(x)t(3D(x)h(x)−h(x)D(x)) = 0 (27). 

Replacing y by α−1(D(x)t) in (26), we get 

h(x)D(x)t(3D(x)h(x)− h(x)D(x)) = 0 (28). 

Subtracting (28) from (27) and using the fact that 

R is semiprime, we get 3D(x)h(x) = h(x)D(x). 

(29). 

 Using (29) in (23) and by 2-torsion 

freeness of R, we get h(x)D(x) = 0 (30) and also 

D(x)h(x) = 0. Now take 

h(x)D(y)+2H(x,y)D(x)=h(x)D(y)+2([D(x),α(y)]+ 

[D(y), α(x)])D(x). Replacing y by x and using 

(9) and (30), we get h(x)D(y) + 2H(x,y)D(x) = 0 

(31). h(x)D(y) = −2H(x,y)D(x) (32). Replacing y 

by xy in (31), we get 

h(x)α(x)D(y)+2h(x)α(y)D(x)+2α(x)H(y,x)D(x)+

2D(x)[α(y), α(x)]D(x) = 0. In view of (32) and 

(30) the last equation becomes 

[h(x),α(x)]D(y)+2h(x)α(y)D(x)+2D(x)[α(y),α(x)]

D(x) = 0. Using [h(x),α(x)]= 0 and 2-torsion 

freeness of R the last equation becomes 

h(x)α(y)D(x)+D(x)[α(y),α(x)]D(x)=0 (33). 

Replacing y by yx in (33), we have 

h(x)α(y)α(x)D(x)+D(x)[α(y),α(x)]α(x)D(x)=0 

(34). Post multiplying (33) by α(x), we get 

h(x)α(y)D(x)α(x)+D(x)[α(y),α(x)]D(x)α(x)=0 

(35). Subtracting (34) from (35) and using (9), 

we get h(x)α(y)h(x)+D(x)[α(y),α(x)]h(x)= 0 

(36). Replacing y by α
−1

(t) in (36), we get 

h(x)th(x) + D(x)[t,α(x)]h(x) = 0 (37).  

 Replacing y by α
−1

(t) in (15)and then 

replacing z by α
−1

(2D(x)) and using (9), we get 

3h(x)th(x)+4D(x)[t,α(x)]h(x)+2D(x)t[h(x),α(x)]=

0. As [h(x),α(x)]=0, therefore the last equation 

becomes 3h(x)th(x) +4D(x)[t,α(x)]h(x)=0 (38). 

In view of (37), we get h(x)th(x) = 0 and 

semiprimeness of R implies that h(x)= 0 for all x 

∈R. That is [D(x),α(x)]= 0 for all x ∈R. Since 

α:R → R is an automorphism, then we obtain 

[D(x), x] = 0 for all x ∈U. This lead to [D(x),x] 

∈Z(R), for all x ∈U. Thus, according to Lemma 

2.1,we get D(R) ∈Z(R) and the ideal generated 

by D(R) is in the Z(R).This completes the proof. 

Corollary 3.7  

 Let R be a 2-torsion free non-

commutative semiprime ring and α:R → R is an 

automorphism. Suppose that there exists an 

(α,α)-inner derivation D:R → R defined by 

D(x)= α([a,x]) for all x ∈U such that 

[[D(x),α(x)],α(x)]= 0 then D is skewinner 

derivation of R. 

Proof 

 From (30) in Theorem 3.6, with using R 

is noncommutative semiprime ring, we obtain 

D(x)=0 for all x ∈U. Left-multiplying by x, we 
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obtain xD(x)=0for all x ∈U. Again right 

multiplying by x, we get D(x)x=0for all x ∈U. 

From these equation, we obtain D(x)x+xD(x)=0 

for all x ∈U. Thus, we completed our proof. By 

using the similar techniques used in Theorem 2.1 

one can prove the following theorem:  

Theorem 3.8 

 Let R be a 2-torsion free and 3-torsion 

free semiprime ring, U a nonzero left ideal of R 

such that rR(U)=0,and α:R→ R is an 

automorphism. If there exists an (α,α)-derivation 

D: R→ R such that [D(x),α(x)],α(x)] ∈Z(R), then 

D(R) ∈Z(R) and the ideal generated by D(R) is 

in the Z(R). 

Conclusions 

It is clear from this study that, if D: N×N →Nis a 

symmetric mapping which also bi-additive (i.e., 

additive in both arguments), then the trace of D 

satisfies the relation d(x+y) = d(x)+2D(x,y)+d(y) 

for all x, y ∈N. A symmetric biadditive mapping 

D: N×N →N is called a symmetric biderivation 

if D(xy,z) = D(x,y)y+ xD(y,z) is fulfilled for all 

x, y, z ∈N. In this paper we investigate 

concerning a (α,α)- symmetric derivations D on 

semiprime rings and prime rings R. 
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