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Abstract

In the present paper, we studied Q-monoids. We define and characterize the Q-semigroups as a
universal algebra which is a semigroup and in which there is given a system of binary operations Q
satisfying the associative condition: ((x, y), z)B = (x, (y, z)B)a for all x, y, z € S and for each pair of

binary operations «, .
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Introduction

A monoid has finite derivation type
(FDT) if the full homotopy relation is generated
by a finite set called a homotopy base [1]. Squier
proved that this property is indeed a property of
finitely presented monoids, that is, it is an
intrinsic property of a monoid independent of its
presentation [2]. He established the fact that
every monoid that can be presented through a
finite convergent presentation does have FDT.
Thus, FDT is one of the necessary conditions
that a finitely presented monoid must satisfy in
order that it can be presented by some finite
convergent string-rewriting system. In this paper
we generalize these results in the case of Q-
monoids [3].

We define, first, the Q- semigroups as a
universal algebra which is a semigroup and in
which there is given a system of binary
operations Q satisfying the associative condition:
((x,¥), 2B = (x, (y, z)B)a for all x, y, z € S and
for each pair of binary operations «a, 8 [4]. In the
first sections of the paper we define and give
some general results related to the Q-string
rewriting systems, the properties of confluence,
Noetherian, Church-Rosser, critical peaks, the
word problem for the Q-monoids and so on [5].
The last two sections are dedicated to the
property of finite derivation type (FDT) and the

related results of [6] generalized in the case of
Q- monoids.

Preliminaries

In this section we give some
preliminaries which are useful in the sequel. We
begin by the following definition.

Definition 2.1

A binary relation on X is a subset R € X
x X. If (x, y) € R, then we denote this by xRy
and we say that x is related to y by R. The
inverse relation of R is the binary relation R™* ¢
X x X defined by yR'x & (x, y) € R. The
relation IX = {(x, x), x € X} is called the identity
relation. The relation (X)? is called the complete
relation [7, 8, 9].
Let RS X x X and S € X x X two binary
relations. The composition of R and S is a binary
relation S e R € X x X defined by xS o Rz & 3y
€ X such that xRy and ySz.
A binary relation R on a set X is said to be

i. Reflexive if xRx for all x € X;
ii.  Symmetric if xRy implies yRx;
iii.  Transitive if xRy and yRz imply xRz;
4. Antisymmetric if xRy and yRx imply x = y.
Let R be a relation on a set X. The reflexive
closure of R is the smallest reflexive relation R°
on X that contains R; that is,
i. RCR°
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ii. If R'is a reflexive relation on X and R S
R',then R°C R'.
The symmetric closure of R is the smallest
symmetric relation R+ on X that contains R; that
is
i. RCSR+
ii. If R'is a symmetric relation on X and R
C R'then R+ C R'.
The transitive closure of R is the smallest
transitive relation R+ on X that contains R; that is
I. RCRx
ii. If R'is a transitive relation on X and R S
R’ then R+ C R'.
Let R be a relation on a set X. Then
i. R°=RUIX
i. R'=RUR"
iii. R*=URk k=+ook=1.
Let X be an alphabet. A semi-Thue system R
over X, for briefly STS, is a finite set R € X* X
Xx*, whose elements are called rules [10]. A rule
(s, t) will also be written as s — t. The set (R) of
all left-hand sides and r(R) of all right-hand
sides are defined as follows:
(R)={s € X*, At e X«: (s, t) e R}yand r(R) = {t
€ X*, ds € X*: (s, t) € R}.
If R is finite, then the size of R is denoted by ||R||
and is defined as ||R|| = Z (|s| + |t]) (s,)ER .
We define the binary relation —R as follows,
where u, v € X*:u —R v if there exist x, y € X*
and (r, s) € R with u = xry and v = xsy. We
write u —R * v if there are words u0, uy, ..., un
€ X* such that u0 = u, ui -R ui+1,v0<i<n-—
Lu,=v. Ifn=0,wehaveu=v,and ifn=1,
then we have u —R v. Note that —R * is the
reflexive transitive closure of — . The Thue
congruence «<>R * is the equivalence relation
generated by — . If R is a relation on X and R#
denotes the congruence generated by R then the
relations <R * and R# coincide. A decision
problem is a restricted type of an algorithmic
problem where for each input there are only two
possible outputs. In other words, a decision
problem is a function that associates with each
input instance of the problem a truth value true
or false.

Definition 2.2.

A graph G is a 5-tuple G = (V, E, o, 1,-1)
, Where 1/ is the set of vertices and E is the set of
edges of G; o, t: E — V are mappings, which
associate with each edge e € E its initial vertex
o(e) and its terminal vertex t(e),
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respectively.;and e’ E — E is a mapping
satisfying the following conditions: e # e,
(eHt=¢ a(e™) =1(e) and 7(e ) = a(e) for all
e€E.

Definition 2.3

Let G = (V, E, o, 7,-1) be a graph, and let
n € N. A path in G (of length n) is a (2n + 1)-
tuple p = (v0, ey, v1, ..., vn L, en, vn ) With vg,
Vi, ..., Un €V and ey, ey, ..., en € E such that
o(e:) =vi—1and t(e; ) = v; hold for all i = 1,2,
..., n. In this situation p is a path from v to vp,
and the mappings a, T can be extended to paths
by setting (p) = vo and (p) = vn. Foru, v € V, (u,
v) denotes the set of paths in G from u to v. In
particular, for each v € V, (v, v) contains the
empty path (v).

Also the mapping -1 can be extended to
paths. The inverse path p—1 € (vn, v0) of p is
the following path p * = (vn, ex *, vn—1, ..., v1,
e; ', v0). Finally, if p € (u, v) and q € (v, w),
then the composite path p o g € (u, w) is defined
in the obvious way.

It is clear that, the composition of paths is
an associative operation, and the empty paths act
as identities for composition. Next, if p € (u, v),
then (p—1)-1 = p, and if g € P(v, w) then (p o
q)—1 =g—1 o p—1. Finally, if p is an empty path,
then p—1 = p. If G is a graph, then P(G) will
denote the set of all paths in G, and P(2)(G) =
{(v, Qlp, q € P(G)such that a(p) = a(q)and
t(p) = 7(q)} is the set of all pairs of paths that
have a common initial vertex and a common
terminal vertex.

Definition 2.4.

Let G1 = (V1, E1, o1, 71,-1) and G2 =
(V2, E2, 02, 12,-1) be graphs. A mapping from
Gl to G2 is an ordered pair f = (fV, ) of
functions, where fV : V1 — V2 and for each e €
El, fE (e) is a path in G2 from fV (c1(e)) to fV
(t1(e)). Further, for each e € E1, fE (e-1) = (fE
(e))—1 . The mapping f is called a morphism if
fE carries edges to edges.

It is clear that a mapping f: G1 — G2
induces a mapping f: (G1) — (G2).

Definition 2.5.

Let G = (V, E, o, t,-1) be a graph. A
subgraph G1 = (V1, E1, o1, t1,-1) of G consists
of a subset V1 of VV and a subset E1 of E such
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that, for all e € E1, o1(e) = o(e) € V1 and tl(e)
=1(e) € V1. Next,e-1 € Elforall e € E1.

Definition 2.6.

([6]) A type of universal algebras is an
ordered pair of a set T and a mapping w — nw
that assigns to each w € T a nonnegative integer
nw, the formal arity of w. A universal algebra, or
just algebra of type T is an ordered pair of a set
A and a mapping, the type — T algebra structure
on, that assigns to each w € T an operation wA
on A of arity nw.

Results and discussion

A semigroup with multiple operators or a
Q-semigroup is a universal algebra which is a
semigroup and in which there is given a system
of binary operations Q satisfying the associative
condition: ((x, ), z) = (x, (v, z)) forall x, y, z €
S and for each pair of binary operations «a, . Let
(S, Q), (T, Q) be two Q-semigroups. Then, f: S
— T is @ homomorphism if ((x, ¥)) = ((x), (¥)),
X,y €S, Vw € Q. Next, we define the free Q-
semigroup using the concept of the free word
algebra of a type T with the set X as basis, as it is
described in [ 6 ]. For the case of Q-semigroups,
we agree, first, that their type is simply a set of
binary relations which we denote by Q. So, we
construct, inductively, the free Q-word algebras
as follows: denote W0 = X, then for k > 0 denote
Wk the set of all sequences (y, wl, w2) where
wl, w2 € Wk-1and y € Q. For each a € Q, we
denote by Aa the empty word related to a. Now,
we take WX = UWkk>0. Writing this in letters,
we will have that W1 is the set of all sequences
(y, x, y) where y € Q and x, y € X. It is more
convenient to denote these sequences in the form
xyy. The product xBAB is defined to be x, and
similarly the product of the form Aaay is
defined to be y, where, AS are the empty words
related to the operators a, S, respectively. In the
next step, W2 would have as elements the
sequences (y, wl, w2) where wl, w2 € W1 and
y € Q. If wl = x1ylyl and w2 = x2y2y2, then
(y, wl, w2) would be just the sequence
x1ylylyx2y2y2, with our new notations. And
this procedure continues.

Example 3.1

A semigroup is a set with a single binary
operation. Here Q consists of a single element u
of arity two such that the following associative
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law is satisfied xyuzu = xyzuu for all x, y, z €
S.

Example 3.2

A I'-semigroup is a special case of an Q-
semigroup. Indeed, we define in S binary
operators a: S X S — S such that a(x, y) = xay,
Va € I'. Then, (S, I') is a Q-algebra where I' =
{y: y € I'} satisfying the conditions S(a(x, y), z)
za(x, By, 2),Vx,y,z€S,a, FET.

Example 3.3

It is clear that the free Q-semigroup
defined as above is a Q-semigroup. We will
denote with MX*Q the free Q-monoid on X, that
is the set of finite products xl1yl
xn—lyn-lxnwith x1, ... ,xn € X, yi € Q, 1=
1,2, ... ,n— 1, including the empty product 1.

It is the smallest Q-submonoid of M containing
X.

If MX*Q = M, we say that X generates
M, or that X is a set of generators for M. If X is
finite and generates M, we say that M is a
finitely generated Q-monoid. If X generates M
and no strict subset of X does, we say that X is a
minimal set of generators for M.

Theorem 3.4

If M is a finitely generated Q2-monoid and
X is a set of generators for M, then there is a
finite subset of X which generates M. In
particular, any minimal set of generators for M is
finite.

Proof:

Indeed, for any y = x1yl... xn—1yn—1xn
€ M with x1,..., xn € X, y € Q, we get a finite
set X(y) ={x1, ..., xn}c X. If Y = {yl,...,
ym} generates M, so does the finite set X(Y) =
X(y1) U ... U X(ym) c X. Now, if M is a Q-
monoid, then any map f: X — M extends to a
uniqgue morphism f : MX*xQ — M. A
presentation is a pair (X; R) where X is an
alphabet and R is the following set R = {(u, v)|
u, v € }. The congruence generated by R is
defined as follows:

I. uau'fv <R uav'fv whenever u, v € MX*Q,
a, B €Q,and u'RV'

il. x <R * y whenever x = x0 <R x1 &R ...
—Rxn=y.

We denote by MR the quotient MR = MX*Q/<—R
* which is a Q-semigroup.
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Indeed, it easily verified that the congruence
generated by R, as we defined it, is a Q-
congruence. For this, it’s enough to see that
uau'fv <R uav'fv = uau'fvyw <R
uav'fvyw and uau'fv <R uav'fv =
wyuau'fv <R wyuav' . Let us denote shortly
by p this congruence. Now, for up, vp € MR
and y € Q, let (up)(vp) = (uyv)p. This is well-
defined, since for all u, v € MX*Q and y € Q,
up=upandvp =v'p = (u, u), (v, v)Ep =
(uyv, u'yv), (u'yv, u'yv’) € p = (uyv, u'yv') €
p = (uyv) = (u'yv)p. Let u, v, w € MX*Q and
¥, 4 € Q. Then, it follows that (upyvp)uwp =
(wyv)p)uwp = ((wyv)uw)p = (uy(vpw))p =
upy(vuw)p = upy(vpuwp) and this result
completes the proof.

We have a canonical surjection : MX*Q
— MX*Q/—R * as well. Moreover, if f: X - M
is a map such that (x) = (v) whenever xRy and f~
: MX*Q — M its extension we obtain a unique
morphism f: MXxQ/<R * — M such that f o
nR = f. If the map f is bijective, we write M =
MX*Q/—R » and we say that (X; R) is a
presentation of the Q-monoid M. This means that
the set (X) generates M, and that f(x) = f(y) if
and only if x <R * y. If the map f is bijective
and both X and R are finite we say that M is a
finitely presented Q-monoid. And again, if the
map f is bijective, (X) is a minimal set of
generators and no strict subset of R generates the
congruence «<>R*, then we say that (X; R) is a
minimal presentation of M.

Corollary 3.5

For any morphism: MX*Q/<R * —
MY*Q/<S*, there is a morphism ¢: MX*Q —
MY+Q such that S o @ = f o R.

Proof: MX*Q ¢— MY*Q, mR | | nS and
MX*Q/—R * f — MY*Q/—Sx*. It is sufficient to
define (x) for each x € X, and for this we have to
use the fact that 7S is surjective.

As a crucial step, we define the derivations for
the presentation as follows:

i) An atomic derivation r A—s is given by a pair
(r,s) ER,

i) An elementary derivation x E—y is given by
two words u, v € MX+*Q and an atomic
derivation r A—s such that x = uarfv and y =
uasfv. If u = v = 1, we identify E with the
atomic derivation A4,
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iii) A derivation x F—y is given by a sequence x
= x0 El->x1 E2—... En —» xn = y of
elementary derivations. If n = 1, we identify F
with the elementary derivation E1. If n = 0, we
get the identity derivation.

Composition of derivations is defined in obvious
way. Also, if x, y are words and z F—z' is a
derivation, the derivation xazfy xFy — xaz'fy
is defined in the obvious way.

Let (X; R) be a Q-monoid presentation such that
the Q-string-rewriting system R is noetherian.
This means that there is no infinite sequence x0
El—x1 E2—... En — xn Ent+tl — ... of
elementary derivations. Then for any € MX*Q ,
there is a derivation x F—y where y is reduced
which means that no elementary derivation starts
from y. This y is called a normal form of x.

A peak is an unordered pair of elementary
derivations x E—y and x E' — y' starting from
the same word x. Such a peak is called confluent
if there is a word z and two derivations y F—z
and y' F' — z. It is called critical if E # E' and if
it is of the form rav = u'a’r’ where, in the first
case, u' is a strict prefix of r, or equivalently, v
Is a strict suffix of r".

Theorem 3.6

If (X; R) is a finite convergent
presentation then <>R * is a decidable relation.

Proof:

It would be enough to compare the
reduced form which, in this case, are obviously
computable. If «>R = is a decidable relation then
we say that that the Q-monoid M has a decidable
word problem and this property does not depend
on the choice of the presentation as long as this
presentation is finitely generated, i.e. X is finite.
Indeed, assume that (X; R) and (Y; S) are finitely
generated presentations of the Q- monoid M
such that MR = M = MS. Then for every a € X
there exists a word wa € MY *Q such that a and
wa represent the same element of M. If we
define the homomorphism #: MX*Q — MY*Q
by h(a) = wa then for all u, v € MX*Q we have
u <R * v if and only if A(u) &R * h(v). Thus
the word problem for (X; R) can be reduced to
the word problem for (Y; S) and vice versa. Thus
the decidability and complexity of the word
problem does not depend on the chosen
presentation. Hence, we may just speak of the
word problem for the Q-monoid M.
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Theorem 3.7

Convergence is a decidable property for
any finite noetherian presentation.

Proof:

It follows from the facts that there are
finitely many critical peaks in this case and is
easily seen that they are computable.

Conclusions

In the present paper we have shown that if (X; R)
is a presentation of a Q-monoid, each p = (x, y)
€ R can be seen as a rewrite rule x p—y, with
source x and target y. An elementary reduction
is of the form uaxfv upv — uayfv where u, v
are words and x p—y is a rule (as we define it) .
A reduction is a finite sequence x = x0 r1—x1

r2—x2 ... xn—1 rn —xn = y of elementary
reductions. Each rule is considered as an
elementary reduction, and any elementary

reduction is considered as a reduction of length
1. If x r—y and y s—z are reductions, we write
r * s for the composed reduction x r—y s—z.
Furthermore, there is an empty reduction —x
for any word x € MXx*Q. So we obtain a
category of reductions (X; R). We call R a Q-
string rewriting system.
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