

Research Article

On Characterization of Various Finite Subgroups of Abelian Groups

N. B. Okelo*

School of Mathematics and Actuarial Science,
Jaramogi Oginga Odinga University of Science and Technology,
P. O. Box 210-40601, Bondo-Kenya.

*Corresponding author's e-mail: bnyaare@yahoo.com

Abstract

The present paper, we characterize finite subgroups. Throughout G always denote a finite group. Let H be a subgroup group of G . We have $H \geq H \cap H^x \geq 1$, for any $x \in G$. We call H to be a TI-subgroup of G if $H \cap H^x = H$ or 1 for any $x \in G$. We have shown that if H is normal in G or if H is of a prime order, then H is a TI-subgroup.

Keywords: Group; Finite group; TI-subgroup; Abelian group.

Introduction

Characterizations in group theory regarding subgroups have been done over a period of time by many authors [1-5]. A topic of some interest is to investigate the finite groups in which certain subgroups are assumed to be TI-subgroups. The author in [6] classified the finite groups all of whose subgroups are TI-subgroups. In [7, 8], Guo, they classified the finite groups whose abelian subgroups are TI-subgroups. The aim of this paper is to study the finite AQTI-groups, that is, all of whose abelian subgroups are QTI (that means quasi-trivialintersection)-subgroups [9]. We obtain a classification of the AQTI-groups in Theorem 3.3 (nilpotent case) and Theorem 3.7 (non-nilpotent case). The aim of this work is to characterize TI, ATI and QTI subgroups in depth.

Research Methodology

Definition 1.1

A subgroup H of G is called a QTI-subgroup if $C_G(x) \leq N_G(H)$ for any $1 \neq x \in H$.

Clearly a TI-subgroup is a QTI-subgroup. However, the converse is not true [10].

Example 1.2

Let V be an elementary abelian 3-group of order 35 and H be a subgroup of $GL(5, 3)$ of order

11^2 . Let $G = HV$, where H acts on V in a natural way. Since 11 does not divides $3^a - 1$ for any $a < 5$, the actions of H and its nonidentity subgroups on V are irreducible and fixed-point-free. It follows that $N_G(W) = V$ for any proper subgroup W of V and that $C_G(w) = V$ for any $1 \neq w \in W$, and therefore W is a QTI-subgroup of G . In fact, it is not difficult to see that all abelian subgroups of G are QTI-subgroups, and therefore G is an AQTI-group. Let W_0 be a subgroup of V of order 3^4 . Since $|W_0 \cap W_0^x| = 3^3$ for any $1 \neq x \in H$, W_0 is not a TI-subgroup. A very important question to ask at this juncture is: Under which additional condition P , a QTI-subgroup is necessary a TI-subgroup? that is, QTI-subgroup+ $P \Rightarrow$ TI-subgroup.

Results and discussion

Lemma 3.1

Let G be an AQTI-group. Then the following statements hold.

- (i) Any subgroup of G is again an AQTI-group.
- (ii) For any abelian subgroup H of G , if $H \cap Z(G) > 1$, then H is normal in G .
- (iii) For any $1 \neq x \in G$, $C_G(x)$ is nilpotent.

Proof : (i) and (ii) are clear. (iii) For any cyclic subgroup $A/\langle x \rangle$ of $C_G(x)/\langle x \rangle$, A is an abelian subgroup of an AQTG group $C_G(x)$, and so A is normal in $C_G(x)$ (see (2)). It follows that all cyclic subgroups (and so all subgroups) of $C_G(x)/\langle x \rangle$ are normal in $C_G(x)/\langle x \rangle$. Then $C_G(x)/\langle x \rangle$ is nilpotent, and so $C_G(x)$ is nilpotent. Recall that a CN-group is a group in which the centralizer of any nonidentity element is nilpotent. Now the above lemma implies that an AQTG group is a CN-group. For any finite group G, we define its prime graph $\Gamma(G)$ (see [8]) as follows: Whose vertex set is $\pi(G)$, and two vertices p, q are jointed by an edge if G has an element of order pq. If σ is a vertex set of a connected component of $\Gamma(G)$, then σ is called a prime component of G. This completes the proof.

Lemma 3.2

([2, Theorem 2.2]) Let G be a CN-group and σ a prime component of G. Then G possesses a nilpotent Hall σ -subgroup H, and any σ -subgroup is contained in some G-conjugate of H, furthermore H is a TI-subgroup if in addition $|\sigma| \geq 2$. In particular, if G is a nonnilpotent AQTG-group, then $\Gamma(G)$ is disconnected.

We note that the original proof of above lemma is elementary. Recall that a Hamiltonian group is a nonabelian group in which all subgroups are normal. It is known that a Hamiltonian group is a direct product of Q_8 , an elementary abelian 2-group and an abelian group of odd order. For a p-group G, we put $V_1(G) = \langle x^p \mid x \in G \rangle$.

Theorem 3.3

For a finite p-group G, the following statements are equivalent.

- (1) All subgroups of G are TI-subgroups.
- (2) All abelian subgroups of G are TI-subgroups.
- (3) All abelian subgroups of G are QTI-subgroups, ie., G is an AQTG-group.
- (4) G is one of the following p-groups:
 - (4.1) G is an abelian p-group.
 - (4.2) G is a Hamiltonian 2-group, that is a product of Q_8 and an elementary abelian 2-group.

(4.3) G is the central product of Q_8 and D_8 ;

(4.4) $G/Z(G)$ is of order p^2 , $Z(G)$ is cyclic and $G' \cong Z_p$ is the only minimal normal subgroup of G.

Remark: The objective of the paper [6] is to show the following: The finite p-groups all of whose abelian subgroups are TI-subgroups, are just the groups of types (4.1)-(4.4). Our arguments (of Theorem 3.3) are much shorter than those in [6].

Proof : We need only to show (3) implying (4). Suppose that all abelian subgroups of G are normal. Then all subgroups of G are normal, and so G is of type (4.1) or type (4.2). In what follows we assume that G has an abelian but not normal subgroup, and we will show that G is of type (4.3) or type (4.4). Observe first that for any nontrivial abelian subgroup A of G, A is normal in G iff $A \cap Z(G) > 1$ (see Lemma 3.1(ii)).

Step 1. $Z(G)$ is cyclic. Suppose that $Z(G)$ is not cyclic and let A be any abelian subgroup of G. If $A \cap Z(G) > 1$, then A is normal in G. If $A \cap Z(G) = 1$, then AU, AV are normal in G where $U, V \cong Z_p$ are distinct subgroups of $Z(G)$, and so $A = AU \cap AV$ is normal. This implies that all abelian subgroups are normal, which contradicts our assumption.

Step 2. Let Z be the unique minimal normal subgroup of G. Then G/Z is abelian, and $Z = G'$. Let A/Z be any cyclic subgroup of G/Z . Then A is normal in G because A is abelian with $A \cap Z(G) \geq Z$. It follows that all subgroups of G/Z are normal. Suppose G/Z is nonabelian. Then G is a Hamiltonian 2-group, and so $G/Z \cong Q_8 \times Z_2 \times \dots \times Z_2$. Let $T/Z \cong Q_8$. Clearly T is normal in G and so T' is normal in G. Since Z is the unique minimal normal subgroup of G, $T' \geq Z$, and this implies that $|T/T'| = 4$. Now applying [3, Ch3, theorem, 11.9], we conclude that $Z(T) = Z$. By [3, Page 94, exercise 58], we get a contradiction. Thus G/Z is abelian, and so $Z = G'$.

Step 3. Final part of proof. Since $G' = Z$ is the unique minimal normal subgroup of G, it follows by [5, Lemma 12.3] that $G/Z(G)$ is elementary abelian and that all nonlinear irreducible

complex characters of G have degree $\sqrt{|G/Z(G)|}$.

Since G has an abelian but not normal subgroup A and $A \cap Z(G) = 1$, we can find an element t such that $\langle t \rangle \cap Z(G) = 1$. Then $H =: C_G(t) < G$.

..... It is easy to see that H is a maximal subgroup of G and that all abelian subgroups of H are normal (and so H is abelian or $H = Q_8 \times Z_2 \times \dots \times Z_2$). Suppose that H is abelian. Since $|G : H| = p$, all nonlinear irreducible complex characters of G have degree p , and this implies that $|G/Z(G)| = p^2$, thus G is of type (4.4). Suppose that $H = Q_8 \times Z_2 \times \dots \times Z_2$. Then G possesses an abelian subgroup of index 4. It follows that all nonlinear irreducible complex characters of G have degree 2 or 4. Thus either $|G/Z(G)| = 4$ and then G is of type (4.4), or $|G/Z(G)| = 2^4$. Let us investigate the case when $|G/Z(G)| = 2^4$. For this case, we can prove that G is an extra special 2-group of order 2^5 (Thus, $G \cong D_8 * D_8$ or $D_8 * D_8$) and that the case $G = D_8 * D_8$ is impossible. And hence G is a central product of D_8 and Q_8 , ie., G is of type (4.3).

Lemma 3.4

Let G be a finite group. Then G is an AQTI-subgroup iff G satisfies the following conditions:

(1) G is a CN-group,

(2) Let σ be any prime component of G and let M be a Hall σ -subgroup of G . Then either M is one of the p -groups listed in theorem 3.3, or M is abelian, or M is a Hamiltonian group.

Applying Theorem 3.3 and Lemma 3.4, we obtain the following result.

Theorem 3.5

Let G be a nilpotent group. Then G is an AQTI-group if and only if one of the following holds.

(1) G is abelian.

(2) G is a Hamiltonian group.

(3) G is of type (4.3) or (4.4) in Theorem 3.1.

The proof of Lemma 3.4: Suppose that G is an AQTI-group. By Lemma 2.2, G is a CN-group, and G possesses a nilpotent Hall σ -subgroup M for any prime component σ of G . Clearly M is again an AQTI-subgroup, and we need to show that if $|\sigma| \geq 2$ then all subgroups of M are

normal in M . Assume this is not true. Write $M = P \times Q$, where Q is a nontrivial p -group, and $P \in Syl_p(M)$ has an abelian but not normal subgroup P_1 . Let $1 \neq x \in Z(Q) \leq P_1 \times Q$. As $P_1 \times Z(Q)$ is a QTI-subgroup of M , $M = C_M(x) \leq N_M(P_1 \times Z(Q)) = N_P(P_1) \times Q$, and this implies that P_1 is normal in P , a contradiction. Suppose conversely that G satisfies the conditions of Lemma 3.2. Let H be an abelian subgroup of G and $1 \neq x \in H$. Let p be a prime divisor of $|H|$ and let σ be a prime component containing p of G . By Lemma 2.2 we may assume $C_G(x) \leq M$. If $|\sigma| \geq 2$, then M is a Hamiltonian group or an abelian group, thus H is normal in M , and so $C_G(x) = C_M(x) \leq M = N_M(H) \leq N_G(H)$. If $|\sigma| = 1$, then M is an AQTI-group of prime power order, so $C_G(x) = C_M(x) \leq N_M(H) \leq N_G(H)$. Thus H is a QTI-subgroup of G , and therefore G is an AQTI-group. If $G = HN$ is a Frobenius group with a kernel N and a complement H , then we say that H acts frobeniusly on N . In this case, we know that N is nilpotent and any Sylow subgroup of H is either a cyclic group or a generalized quaternion group, and that $\pi(H)$, $\pi(N)$ are just two prime components of G (see [8]). If there are $M, N < G$ such that G/N is a Frobenius group with M/N as its kernel and M is a Frobenius group with N as its kernel, then G is called a 2-Frobenius group, and such a 2-Frobenius group is denoted by $\text{Frob}_2(G, M, N)$. In this case, we know that G is solvable, and that $\pi(M/N)$ and $\pi(G/M) \cup \pi(N)$ are just two prime components of G (see [8]).

Lemma 3.6

Let $G = HN$ be a Frobenius group with a complement H and a kernel N . If G is an AQTI-group, then the following statements hold.

(1) H is either a cyclic group or a product of Q_8 with a cyclic group of odd order.

(2) N is either an abelian group or of type (4.4) listed in Theorem 3.3.

Proof: Since G is a Frobenius group, $\Gamma(G)$ has just two connected components with $\pi(H)$, $\pi(N)$ as its vertex sets.

(1) If H is nonnilpotent, then Lemma 2.2 implies that $\Gamma(H)$ is disconnected, and then $\Gamma(G)$ has at least three connected components, a contradiction. Thus H is nilpotent. If $P \in Syl(H)$ is not cyclic, then P is a generalized quaternion group, and then $P \cong Q_8$ by Theorem 3.1. The result follows.

(2) Since N is the Frobenius kernel, N is nilpotent. Assume that N is nonabelian and let P be a nonabelian Sylow p -subgroup of N . Then P is one of the three types listed in Theorem 3.1. Assume that $P \cong Q_8 \times Z_2 \times \dots \times Z_2$. Then $V_1(P)$ is a normal subgroup of G of order 2, which is clearly impossible. Assume that P is the central product of Q_8 and D_8 . Then $Z(P)$ lies in $Z(G)$, a contradiction. Thus P is of type (4.4) in Theorem 3.3, and then $N = P$ by Theorem 3.3.

Lemma 3.7

Let $G = \text{Frob}_2(G, H, K)$. If G is an AQTI-subgroup, then G is isomorphic to symmetric group S_4 .

Proof: Note that G is solvable with just two prime components $\pi_1 = \pi(H/K)$ and $\pi_2 = \pi(G) - \pi_1$, and that G has a nilpotent Hall π_2 -subgroup W (see Lemma 3.2). Clearly K is the Fitting subgroup of G , thus $C_w(K) \leq C_G(K) \leq K$, and so $W > K > Z(W)$. Let $p \in \pi(G/H)$ and P be a Sylow p -subgroup of W . Since $K > Z(W) \geq Z(P)$, $P \cap K \geq Z(P)$ is nontrivial. Let $G_1 > P$ be a $\pi_1 \cup \{p\}$ -Hall subgroup of G . It follows that $G_1 = \text{Frob}_2(G_1, H \cap G_1, P \cap K)$. Assume that $G_1 < G$. Then induction yields that $G_1 \cong S_4$, thus $P \in \text{Syl}_2(S_4)$ is isomorphic to D_8 , and then $W = P$ by Theorem 3.3, so $G_1 \cong S_4$ as wanted. In what follows, we assume that $\pi_2 = \{p\}$. Then W is one of the nonabelian p groups listed in Theorem 3.3.

Case 1. Assume that $W \cong Q_8 \times Z_2 \times \dots \times Z_2$. As $W > K > Z(W)$, K is a product of Z_4 and an elementary abelian 2-group. It follows that $V_1(K) < G$ with $|V_1(K)| = 2$, a contradiction.

Case 2. Assume that W is the central product of Q_8 and D_8 . As $W > K > Z(W)$, $|K| \in \{4, 8, 16\}$. If K is abelian, then $K \in \{Z_4 \times Z_2, Z_4, Z_2 \times Z_2\}$ (see [3, Ch3, Theorem 13.8]). Now $K/\Phi(K) = Z_2$ or $Z_2 \times Z_2$, it follows that $G/K \leq \text{Aut}(K/\Phi(K)) \leq S_3$, then $|P| \leq 16$, a contradiction. If K is nonabelian and of order 16, then $K \cong Q_8 \times Z_2$ or $|K/Z(K)| = 4$ with $Z(K) \cong Z_4$. For the first case, let $Z = V_1(K)$; and for the second case, let $Z = V_1(Z(K))$. Then Z is normal in G with $|Z| = 2$, a contradiction. If K is nonabelian and of order 8, then $K \cong Q_8$ or D_8 , and then $G/K \leq \text{Aut}(K/\Phi(K)) = \text{Aut}(Z_2 \times Z_2) = S_3$, thus $|P| = 16$, a contradiction.

Case 3. Assume that $W/Z(W) \cong Z_p \times Z_p$ and $Z(W)$ is cyclic. Then K is abelian with $|W : K| = |K : Z(W)| = p$. Note that $G = N_G(U)H = N_G(U)K$ by Frattini argument, where U is a Hall π_1 -subgroup of G . Clearly $N_G(U) \cap K = N_K(U) = 1$, and so $N_G(U) \cong G/K$ is a Frobenius group with a complement of order p . Suppose K is not elementary abelian. Then $V_1(K)$ is a nontrivial cyclic normal subgroup of G . Let us consider $G_1 = N_G(U)V_1(K)$. We see that $V_1(K) = \text{Fit}(G_1)$, and $N_G(U) \leq \text{Aut}(V_1(K))$ is abelian, a contradiction. Hence K is elementary abelian, and in particular $Z(W) \cong Z_p$. Now $N_G(U) \leq \text{Aut}(K) = \text{Aut}(Z_p \times Z_p) = \text{GL}(2, p)$. Note that if $p > 2$, then it is easy to check that $\text{GL}(2, p)$ has no subgroup which is a Frobenius group with a complement of order p . This implies that $K \cong Z_2 \times Z_2$, and hence $N_G(U) \cong S_3$, and $G \cong S_4$.

Theorem 3.8

Let G be a nonnilpotent group. Then G is an AQTI-subgroup iff G is one of the following groups.

(1) $G = HN$ is a Frobenius group with a complement H and a kernel N , where N is abelian, and H is either a cyclic group or a product of Q_8 with a cyclic group of odd order.

(2) $G = HN$ is a Frobenius group with a complement H and a kernel N , where H is a cyclic subgroup of Z_{p-1} and N is a p -group of the type (4.3) in Theorem 3.3.

(3) $G \cong S_4$.

(4) $G \cong L_2(q)$, where $q = 5, 7, 9$.

Proof: Suppose that $G \in \{S_4, L_2(5), L_2(7), L_2(9)\}$. Then it is easy to check that G is an AQTI-group. Suppose that G is a Frobenius group of type (1) or (2). We also conclude by Lemma 3.2 that G is an AQTI-group. Suppose that G is a nonnilpotent AQTI-group. Then the prime graph $\Gamma(G)$ is disconnected (see Lemma 3.2). Assume that G is solvable. It is well known that G is a Frobenius or 2-Frobenius group (see [8]), and then Lemma 3.6 and Lemma 3.7 imply that G is of type (1) or type (2). In what follows, we assume that G is a nonsolvable AQTI-group. Let $N = \text{Sol}(G)$, the maximal normal solvable subgroup of G . It follows by [8] that G has a normal series $N < H < G$ such that N and G/H are π -groups and H/N is a nonabelian simple group, where π is the prime component of G containing 2. Furthermore, $N = \text{Sol}(G) = \text{Fit}(G)$, $G/N \leq \text{Aut}(H/N)$. Let P_1 be a nilpotent Hall π -subgroup of G (see Lemma 3.2), and $P = P_1 \cap H$.

Claim 1. If $N > 1$, then $\pi = \{2\}$. Suppose that $N > 1$ and $|\pi| \geq 2$. By Lemma 3.2, P_1 is a TI-subgroup of G . Since $N \leq P_1$ is a nontrivial normal subgroup of G , P_1 is normal in G , so G is solvable, a contradiction. Thus $|\pi| = 1$ and so $\pi = \{2\}$.

Claim 2. $N = 1$. Suppose that $N > 1$ and let E be any normal subgroup of G with $1 < E \leq N$. By claim 1, $\pi = \{2\}$ and P is a 2-group. Assume that $C_G(E)N > N$. Since H/N is simple and is a unique minimal normal subgroup of G/N , $C_G(E)N \geq H$. Then any odd order subgroup of H acts trivially on E , which is clearly impossible. Hence $C_G(E) \leq N$, and in particular $P > N > Z(P)$. Now P is one of the 2-groups listed in Theorem 3.1. Arguing as in the proof of Lemma 4.2, we can find a normal subgroup E of G with $1 < E \leq N$ and $E \leq Z_2 \times Z_2$. It follows that $G/C_G(E) \leq \text{Aut}(E)$ is solvable, and so G/N is solvable because $C_G(E) \leq N$, a contradiction.

Claim 3. $H \cong L_2(q)$, where $q = 5, 7, 9$. As $N = 1$, H is a nonabelian simple group. Since H is an AQTI-group, by Lemma 3.1(iii) H is a CN-group. Note that the only simple nonabelian CN-groups are $Sz(q)$, $L_3(4)$, $L_2(9)$, and $L_2(p)$ where p is a Fermat or a Mersenne prime (see [4, ChXI, Remark 3.12]). Assume that $H \cong Sz(q)$. Then $|P| = q^2$, $q = 22m+1$, where $P_0 = Z(P) = \{1\}$ is an elementary abelian group of order q . Checking the 2-groups listed in Theorem 3.1, we get a contradiction. Assume that $H \cong L_3(4)$. Then $|P| = 2^6$, and $Z(P) \cong Z_2 \times Z_2$. Checking the 2-groups listed in Theorem 3.3, we get a contradiction. Assume that $H \cong L_2(p)$, where p is a prime and $p = 2^m + 1$ or $2^m - 1$. Then P is a dihedral group of order 2^m (see [3, ChII, Theorem 8.27]). Checking the 2-groups listed in Theorem 3.3, we conclude that $P \cong Z_2 \times Z_2$ or D_8 . Thus either $p = |P| + 1 = 5$ and then $H \cong L_2(5)$, or $p = |P| - 1 = 7$ and then $H \cong L_2(7)$.

Claim 4. $G = H \cong L_2(q)$, where $q = 5, 7, 9$. It suffices to show that $G = H$. Otherwise, $H < G \leq \text{Aut}(H)$. We will apply [1] to get a contradiction. Assume that $H \cong A_5$ (or $L_2(7)$). Then $G \cong S_5$ (or $\text{PGL}(2, 7)$) has an element of order 6, so 2, 3 lie in the same prime component of G . However neither S_5 nor $\text{PGL}(2, 7)$ has a nilpotent Hall $\{2, 3\}$ -subgroup, a contradiction. Assume that $H \cong L_2(9)$. Then G contains a subgroup which is isomorphic to $L_2(9) : 2_1$, $L_2(9) : 2_2$ or $L_2(9) : 2_3$ (see [1]). If $L_2(9) : 2_1 \leq G$, then G has an element of order 6

but has no nilpotent Hall $\{2, 3\}$ -subgroup, a contradiction. If $L_2(9) : 2_2 \leq G$, then G has an element of order 10 but has no nilpotent Hall $\{2, 5\}$ -subgroup, a contradiction. If $L_2(9) : 2_3 \leq G$, then a Sylow 2-subgroup U of $L_2(9) : 2_3$ has order 16 and $|Z(U)| = 2$, and we also get a contradiction by checking the 2-groups listed in Theorem 3.3. Thus $G = H$ as desired.

Conclusions

We conclude this paper by asking two important questions: Let H be a subgroup of a finite group G . Clearly, $H \geq H \cap H^x \geq H_G = \cap_{x \in G} H^x \geq 1$. We call H is a CTI-subgroup of G if $H \cap H^x = H$ or H_G for any $x \in G$. Our question is to classify the finite p -groups (or finite groups) all of whose subgroups (or abelian subgroups) are CTI-subgroups. Secondly, what can we say about the finite groups with no nontrivial TI-subgroup. Here a trivial TI-subgroup is a normal subgroup or a subgroup of prime order.

Conflicts of interest

Authors declare no conflict of interest.

References

- [1] Conway JH, Curtis RT, Norton SP, Parker RA, Wilson RA. *Atlas of finite groups*, Oxford University Press (Clarendon), Oxford and New York; 1985.
- [2] Guo X, Li S, Flavell P. Finite groups whose abelian subgroups are TI-subgroup. *J Algebra* 2007;307:565-69.
- [3] Huppert B, Endlich GI. *Springer-Verlag*, Berlian Heidelberg, New York; 1979.
- [4] Huppert B, Blackburn N. *Finite groups III*, Springer-Verlag, Berlin Heidelberg, New York; 1982.
- [5] Isaacs IM. *Character Theory of Finite Groups*, Academic Press, New York; 1976.
- [6] Li S, Guo X. Finite p -groups whose abelian subgroups have a trivial intersection. *Acta Math. Sin.* 2007;23(4):731-34.
- [7] Walls G. Trivial intersection groups. *Arch Math* 1979;32:1-4.
- [8] Williams JS. Prime graph components of finite groups *J Algebra* 1981;69:487-13.
- [9] Vijayabalaji S, Sathiyaseelan N. Interval-Valued Product Fuzzy Soft Matrices and

its Application in Decision Making, Int J Mod Sci Technol 2016;1(7):159-63.

[10] Chinnadurai V, Bharathivelan K. Cubic Ideals in Near Subtraction Semigroups. Int J Mod Sci Technol 2016;1(8):276-82.
