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Abstract

The present paper, we characterize finite subgroups. Throughout G always denote a finite group. Let H

be a subgroup group of G. We have H>H NH* > 1, for any x € G. We call H to be a TI-subgroup of G
if HN H*=H or 1 for any x ¢ G. We have shown that if H is normal in G or if H is of a prime order,

then H is a Tl-subgroup.
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Introduction

Characterizations in group theory
regarding subgroups have been done over a
period of time by many authors [1-5]. A topic of
some interest is to investigate the finite groups in
which certain subgroups are assumed to be TI-
subgroups. The author in [6] classified the finite
groups all of whose subgroups are TI-subgroups.
In [7, 8], Guo, they classified the finite groups
whose abelian subgroups are TI-subgroups. The
aim of this paper is to study the finite AQTI-
groups, that is, all of whose abelian subgroups
are QTI (that means quasi-trivialintersection)-
subgroups [9]. We obtain a classification of the
AQTI-groups in Theorem 3.3 (nilpotent case)
and Theorem 3.7 (non-nilpotent case). The aim
of this work is to characterize TI, ATl and QTI
subgroups in depth.

Research Methodology
Definition 1.1

A subgroup H of G is called a QTI-subgroup if
Cs(X) <Ng(H) forany 1=xeH.

Clearly a TI-subgroup is a QTI-subgroup.
However, the converse is not true [10].

Example 1.2

Let V be an elementary abelian 3-group of order
35 and H be a subgroup of GL(5, 3) of order

112. Let G = HV, where H acts on V in a natural

way. Since 11 does not divides 3* — 1 for any a
< 5, the actions of H and its nonidentity
subgroups on V are irreducible and fixed-point-
free. It follows that N ; (W) =V for any proper

subgroup W of V and that C_(w) =V for any

1weW, and therefore W is a QTI-subgroup
of G. In fact, it is not difficult to see that all
abelian subgroups of G are QTI-subgroups, and
therefore G is an AQTI-group. Let W, be a

subgroup of V of order 3*. Since |W, "W,* | =
3° forany 1= xeH , W, is not a Tl-subgroup.

A very important question to ask at this juncture
is: Under which additional condition P, a QTI-
subgroup is necessary a Tl-subgroup? that is,
QTI-subgroup+ P?= TI-subgroup.

Results and discussion
Lemma 3.1

Let G be an AQTI-group. Then the following
statements hold.

(i) Any subgroup of G is again an AQTI-
group.

(i1) For any abelian subgroup H of G, if
H " Z(G)>1, then His normal in G.

(i) For any 1#xeG, Cg(x) s
nilpotent.
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Proof : (i) and (ii) are clear. (iii) For any cyclic
subgroup A/(x) of Cg(x)/(x), A is an abelian
subgroup of an AQTI group C (x), and so A is
normal in C;(x) (see (2)). It follows that all

cyclic subgroups (and so all subgroups) of
Cs(X)/(x) are normal in Cg(x)/(x). Then
Cs () /(x) is nilpotent, and so C;(x) is
nilpotent. Recall that a CN-group is a group in
which the centralizer of any nonidentity element
is nilpotent. Now the above lemma implies that
an AQTI group is a CN-group. For any finite
group G, we define its prime graph I'(G) (see
[8]) as follows: Whose vertex set is 7 (G), and
two vertices p, q are jointed by an edge if G has
an element of order pg. If o is a vertex set of a
connected component of T'(G), then o is called
a prime component of G. This completes the
proof.

Lemma 3.2

([2, Theorem 2.2]) Let G be a CN-group and o
a prime component of G. Then G possesses a
nilpotent Hall o -subgroup H, and any o-
subgroup is contained in some G-conjugate of H,
furthermore H is a Tl-subgroup if in addition

lo|>2. In particular, if G is a nonnilpotent

AQTI-group, then I'(G) is disconnected.

We note that the original proof of above lemma
is elementary. Recall that a Hamiltonian group is
a nonabelian group in which all subgroups are
normal. It is known that a Hamiltonian group is a
direct product of Q g, an elementary abelian 2-

group and an abelian group of odd order. For a
p-group G, we put V, (G) = (x"[x € G).

Theorem 3.3

For a finite p-group G, the following statements
are equivalent.

(1) All subgroups of G are TI-subgroups.

(2) All abelian subgroups of G are TI-
subgroups.

(3) All abelian subgroups of G are QTI-
subgroups, ie., G is an AQTI-group.

(4) G is one of the following p-groups:

(4.1) G is an abelian p-group.

(4.2) G is a Hamiltonian 2-group, that is a
product of Qg4 and an elementary abelian 2-

group.

On characterization of various finite subgroups of Abelian groups

(4.3) G is the central product of Q g and
Ds;

(4.4) G/Z(G) is of order p?, Z(G) is cyclic
and G = Z, is the only minimal normal
subgroup of G.

Remark: The objective of the paper [6] is to
show the following: The finite p-groups all of
whose abelian subgroups are TI-subgroups, are
just the groups of types (4.1)-(4.4). Our
arguments (of Theorem 3.3) are much shorter
than those in [6].

Proof : We need only to show (3) implying (4).
Suppose that all abelian subgroups of G are
normal. Then all subgroups of G are normal, and
so G is of type (4.1) or type (4.2). In what
follows we assume that G has an abelian but not
normal subgroup, and we will show that G is of
type (4.3) or type (4.4). Observe first that for any
nontrivial abelian subgroup A of G, A is normal
inGiff AnZ(G) >1 (see Lemma 3.1(ii)).

Step 1. Z(G) is cyclic. Suppose that Z(G) is not
cyclic and let A be any abelian subgroup of G. If
ANZ(G)>1, then A is normal in G. If
ANZ(G)=1, then AU, AV are normal in G
where U, V =Z  are distinct subgroups of

Z(G), and so A = AU mn AV is normal. This
implies that all abelian subgroups are normal,
which contradicts our assumption.

Step 2. Let Z be the unique minimal normal
subgroup of G. Then G/Z is abelian, and Z=G .
Let A/Z be any cyclic subgroup of G/Z. Then A is
normal in G because A is abelian with
ANZ(G)>Z. It follows that all subgroups of
G/Z are normal. Suppose G/Z is nonabelian.
Then G is a Hamiltonian 2-group, and so
GlZ=QyxZ,x..xZ,. Let T/Z =Q,. Clearly

Tisnormal in G and so T is normal in G. Since
Z is the unique minimal normal subgroup of G,
T'>Z, and this implies that [T/T'|=4. Now
applying [3, Ch3, theorem, 11.9], we conclude

that Z(T) = Z. By [3, Page 94, exercise 58], we
get a contradiction. Thus G/Z is abelian, and so

Z=G.

Step 3. Final part of proof. Since G = Z is the
unique minimal normal subgroup of G, it follows
by [5, Lemma 12.3] that G/Z(G) is elementary
abelian and that all nonlinear irreducible
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complex characters of G have
|G/ Z(G)|.

degree

Since G has an abelian but not normal subgroup
A and AnZ(G) = 1, we can find an element t

such that (t)nZ(G) =1. Then H =: Cg(t) < G.

...... It is easy to see that H is a maximal
subgroup of G and that all abelian subgroups of
H are normal (and so H is abelian or
H=QyxZ,x..xZ,). Suppose that H is

abelian. Since |G H| = p, all nonlinear
irreducible complex characters of G have degree
p, and this implies that |G/Z(G)| = p? thus G is
of type (4.4). Suppose that
H=QyxZ,x..xZ,. Then G possesses an

abelian subgroup of index 4. It follows that all
nonlinear irreducible complex characters of G
have degree 2 or 4. Thus either |G/Z(G)| = 4 and
then G is of type (4.4), or |G/Z(G)| = 2*. Let us
investigate the case when |G/Z(G)| = 2*. For this
case, ...... we can prove that G is an extra special
2-group of order 2° (Thus, G=D,*D, or
D, *Dg) and that the case G=Dg;*D; is

impossible. And hence G is a central product of
Dg and Qg, ie., G is of type (4.3).

Lemma 3.4

Let G be a finite group. Then G is an AQTI-
subgroup iff G satisfies the following conditions:

(1) Gisa CN-group,

(2) Let o be any prime component of G
and let M be a Hall o - subgroup of G. Then
either M is one of the p-groups listed in theorem
3.3, or M is abelian, or M is a Hamiltonian
group.

Applying Theorem 3.3 and Lemma 3.4, we
obtain the following result.

Theorem 3.5

Let G be a nilpotent group. Then G is an AQTI-
group if and only if one of the following holds.

(1) G is abelian.

(2) G is a Hamiltonian group.

(3) G is of type (4.3) or (4.4) in Theorem
3.1.
The proof of Lemma 3.4: Suppose that G is an
AQTI-group. By Lemma 2.2, G is a CN-group,
and G possesses a nilpotent Hall o - subgroup
M for any prime component o of G. Clearly M
is again an AQTI-subgroup, and we need to

show that if |o|>2 then all subgroups of M are
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normal in M. Assume this is not true. Write M =
P x Q, where Q is a nontrivial p -group, and
PeSyl (M) has an abelian but not normal

subgroup P;. Let 1#xeZ(Q) <P, xQ. As Py x
Z(Q) is a QTI-subgroup of M, M = Cpu(x) <
Nm(P1 x Z(Q)) = Np(P1) x Q, and this implies
that P, is normal in P, a contradiction. Suppose
conversely that G satisfies the conditions of
Lemma 3.2. Let H be an abelian subgroup of G
and 1#xeH. Let p be a prime divisor of |H|
and let o be a prime component containing p of
G. By Lemma 2.2 we may assume Cg(x) <M. If
|o| > 2, then M is a Hamiltonian group or an
abelian group, thus H is normal in M, and so
Co(X) = Cm(x) < M =Npm(H) < Ng(H). If |o| =
1, then M is an AQTI-group of prime power
order, so Cg(X) = Cm(X) < Nm(H) < Ng(H).
Thus H is a QTI-subgroup of G, and therefore G
is an AQTI-group. If G = HN is a Frobenius
group with a kernel N and a complement H, then
we say that H acts frobeniusly on N. In this case,
we know that N is nilpotent and any Sylow
subgroup of H is either a cyclic group or a
generalized quaternion group, and that = (H),
7 (N) are just two prime components of G (see
[8]). If there are M, N < G such that G/N is a
Frobenius group with M/N as its kernel and M is
a Frobenius group with N as its kernel, then G is
called a 2-Frobenius group, and such a 2-
Frobenius group is denoted by Frob,(G,M,N). In
this case, we know that G is solvable, and that
7 (M/N) and 7 (G/M) U z(N) are just two
prime components of G (see [8]).

Lemma 3.6

Let G = HN be a Frobenius group with a
complement H and a kernel N. If G is an AQTI-
group, then the following statements hold.

(1) H is either a cyclic group or a product
of Qg with a cyclic group of odd order.

(2) N is either an abelian group or of type
(4.4) listed in Theorem 3.3.
Proof: Since G is a Frobenius group, I'(G) has
just two connected components with 7z (H),
7 (N) as its vertex sets.
(1) If H is nonnilpotent, then Lemma 2.2 implies
that I'(H) is disconnected, and then I'(G) has at
least three  connected components, a
contradiction. Thus H is nilpotent. If P Syl(H)
is not cyclic, then P is a generalized quaternion
group, and then P== Qg by Theorem 3.1. The
result follows.
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(2) Since N is the Frobenius kernel, N is
nilpotent. Assume that N is nonabelian and let P
be a nonabelian Sylow p-subgroup of N. Then P
is one of the three types listed in Theorem 3.1.
Assume that P =Q; xZ, x...xZ,. Then V4(P) is
a normal subgroup of G of order 2, which is
clearly impossible. Assume that P is the central
product of Qg and Dg. Then Z(P) lies in Z(G), a
contradiction. Thus P is of type (4.4) in Theorem
3.3, and then N = P by Theorem 3.3.

Lemma 3.7

Let G = Frob, (GH,K). If G is an AQTI-
subgroup, then G is isomorphic to symmetric
group S.

Proof: Note that G is solvable with just two
prime  components m, =n(H/K) and
7, =(G)—7,, and that G has a nilpotent Hall
7, - subgroup W (see Lemma 3.2). Clearly K is
the Fitting subgroup of G, thus Cw(K) < Cg(K)
< K, and so W > K > Z(W). Let pex(G/H)
and P be a Sylow p-subgroup of W. Since K
>Z(W)>Z(P), PnK >Z(P) is nontrivial. Let
Gy > P bea =z, u{p} Hall subgroup of G. It
follows that G; = Froby(Gi,H n G, P n K).
Assume that G; < G. Then induction yields that
G, =S,, thus PeSyly(Ss) is isomorphic to Ds,
and then W = P by Theorem 3.3, s0 G, =S, as
wanted. In what follows, we assume that z,=

{p}. Then W is one of the nonabelian p groups
listed in Theorem 3.3.

Case 1. Assume that W =Q,xZ, x...xZ,. As

W > K > Z(W), K is a product of Z, and an
elementary abelian 2-group. It follows that
V,(K) < G with [V1(K)| = 2, a contradiction.

Case 2. Assume that W is the central product of
Qs and Dg. As W > K > Z(W), |K| € {4, 8, 16}.
If K is abelian, then K e {Z4 x Z,,24,Z, X Z5}
(see [3, Ch3, Theorem 13.8]). Now K/®(K) = Z,
or Z; x Z,, it follows that G/K < Aut(K/®(K))
< S3, then |P|< 16, a contradiction. If K is
nonabelian and of order 16, then K= QgxZ, or
|K/IZ(K)| = 4 with Z(K) =Z,4. For the first case,
let Z = V1(K); and for the second case, let Z =
V1(Z(K)). Then Z is normal in G with |Z| = 2, a
contradiction. If K is nonabelian and of order 8,
then K= Qg or Dg, and then G/K <Aut(K/®(K))
= Aut(Z, x Zy) = Sz thus |P| = 16, a
contradiction.
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Case 3. Assume that W/Z(W) = Z, x Z, and
Z(W) is cyclic. Then K is abelian with |W : K| =
|K: Z(W)| = p. Note that G = Ng(U)H = Ng(U)K
by Frattini argument, where U is a Hall 7, -
subgroup of G. Clearly Ng(U) "K = Nk(U) =1,
and so Ng(U) = G/K is a Frobenius group with a
complement of order p. Suppose K is not
elementary abelian. Then Vy(K) is a nontrivial
cyclic normal subgroup of G. Let us consider G;
= Ng(U)V1(K). We see that V;(K) = Fit(G;), and
Ng(U) <Aut(Vi(K)) is abelian, a contradiction.
Hence K is elementary abelian, and in particular
Z(W) = Z,. Now Ng(U) <Aut(K) = Aut(Z, x
Zp) = GL(2, p). Note that if p > 2, then it is easy
to check that GL(2, p) has no subgroup which is
a Frobenius group with a complement of order p.
This implies that K= Z, x Z,, and hence Ng(U)
~S;,and G=S,.

Theorem 3.8

Let G be a nonnilpotent group. Then G is an
AQTI-subgroup iff G is one of the following
groups.

(1) G = HN is a Frobenius group with a
complement H and a kernel N, where N is
abelian, and H is either a cyclic group or a
product of Qg with a cyclic group of odd order.

(2) G = HN is a Frobenius group with a
complement H and a kernel N, where H is a
cyclic subgroup of Z,.; and N is a p-group of the
type (4.3) in Theorem 3.3.

(3) G=S,.

(4) G = Ly(q), wheregq=5,7,9.

Proof: Suppose that G e {S4,L2(5),L2(7),L2(9)}.
Then it is easy to check that G is an AQTI-
group. Suppose that G is a Frobenius group of
type (1) or (2). We also conclude by Lemma 3.2
that G is an AQTI-group. Suppose that G is a
nonnilpotent AQTI-group. Then the prime graph
I'(G) is disconnected (see Lemma 3.2). Assume
that G is solvable. It is well known that G is a
Frobenius or 2-Frobenius group (see [8]), and
then Lemma 3.6 and Lemma 3.7 imply that G is
of type (1) or type (2). In what follows, we
assume that G is a nonsolvable AQTI-group. Let
N = Sol(G), the maximal normal solvable
subgroup of G. It follows by [8] that G has a
normal series N < H < G such that N and G/H
are m-groups and H/N is a nonabelian simple
group, where 7z is the prime component of G
containing 2. Furthermore, N = Sol(G) = Fit(G),
G/N < Aut(H/N). Let P, be a nilpotent Hall 7 -
subgroup of G (see Lemma 3.2), and P = P; ~H.
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Claim 1. If N > 1, then 7 = {2}. Suppose that N
> 1 and |7|>2. By Lemma 3.2, P, is a TI-
subgroup of G. Since N<P; is a nontrivial
normal subgroup of G, Py is normal in G, so G is
solvable, a contradiction. Thus |z| =1 and so =
={2}.

Claim 2. N = 1. Suppose that N > 1 and let E be
any normal subgroup of G with 1 < E < N. By
claim 1, #={2} and P is a 2-group. Assume that
Cs(E)N > N. Since H/N is simple and is a unique
minimal normal subgroup of G/N, Cg(E)N>H.
Then any odd order subgroup of H acts trivially
on E, which is clearly impossible. Hence
Cs(E)<N, and in particular P > N > Z(P). Now
P is one of the 2-groups listed in Theorem 3.1.
Arguing as in the proof of Lemma 4.2, we can
find a normal subgroup E of G with 1 < EXN
and E < Z, x Z,. It follows that G/Cg(E) <
Aut(E) is solvable, and so G/N is solvable
because Cg(E) < N, a contradiction.

Claim 3. H = Ly(q), whereq=5,7,9. AsN =1,
H is a nonabelian simple group. Since H is an
AQTI-group, by Lemma 3.1(iii) H is a CN-
group. Note that the only simple nonabelian CN-
groups are Sz(q), L3(4), L2(9), and L,(p) where p
is a Fermat or a Mersenne prime (see [4, ChXI,
Remark 3.12]). Assume that H _= Sz(q). Then |P|
=2, q = 22m+1, where PO _= (P) = Z(P) is an
elementary abelian group of order q. Checking
the 2-groups listed in Theorem 3.1, we get a
contradiction. Assume that H=L3(4). Then |P| =
2%, and Z(P) = Z, x Z,. Checking the 2-groups
listed in Theorem 3.3, we get a contradiction.
Assume that H = L,(p), where p is a prime and
p=2"+1or2" - 1. Then P is a dihedral group
of order 2" (see [3, Chll, Theorem 8.27]).
Checking the 2-groups listed in Theorem 3.3, we
conclude that P = Z, x Z, or Dg. Thus either p =
IPl+1=5andthenH = Ly(5),orp=|P|—1=7
and then H = Ly(7).

Claim4. G =H = Ly(q), whereq=5,7,9. It
suffices to show that G = H. Otherwise, H < G
< Aut(H). We will apply [1] to get a
contradiction. Assume that H = As (or Ly(7)).
Then G = Ss (or PGL(2, 7)) has an element of
order 6, so 2, 3 lie in the same prime
component of G. However neither Ss nor
PGL(2, 7) has a nilpotent Hall {2, 3}-subgroup,
a contradiction. Assume that H = L3(9). Then
G contains a subgroup which is isomorphic to
L2(9) : 21, L2(9) : 2, or Lp(9) : 23 (see [1]). If
L2(9) : 2:<G, then G has an element of order 6
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but has no nilpotent Hall {2, 3}- subgroup, a
contradiction. If L»(9) : 2, < G, then G has an
element of order 10 but has no nilpotent Hall
{2, 5}-subgroup, a contradiction. If L(9) : 23 <
G, then a Sylow 2-subgroup U of L,(9) : 25 has
order 16 and |Z(U)| = 2, and we also get a
contradiction by checking the 2-groups listed in
Theorem 3.3. Thus G = H as desired.

Conclusions

We conclude this paper by asking two important
questions: Let H be a subgroup of a finite group
G. Clearly H>HNH*">H,;=n,H*>1.
We call H is a CTIl-subgroup of G if
HAH*=H or Hg for any x e G. Our
question is to classify the finite p-groups (or
finite groups) all of whose subgroups (or abelian
subgroups) are CTI-subgroups. Secondly, what
can we say about the finite groups with no
nontrivial TI-subgroup. Here a trivial TI-
subgroup is a normal subgroup or a subgroup of
prime order.
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