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Abstract. Industrial motors play a crucial role in modern manufacturing and energy systems, where unexpected failures 
can result in significant downtime and financial losses. Therefore, effective condition monitoring is essential to ensure 
operational reliability and cost efficiency. This study presents a machine learning–based approach for industrial motor 
condition monitoring, capable of accurately detecting faults and predicting potential failures at an early stage. The 
proposed method leverages features extracted from vibration, current, and temperature data, followed by optimized 
classification using supervised machine learning algorithms. Experimental results demonstrate that the approach 
achieves high accuracy while reducing computational costs, outperforming conventional techniques. Furthermore, the 
system is scalable and adaptable to various motor types and operating conditions, making it suitable for real-time 
monitoring applications. Overall, this work contributes to improving industrial motor reliability, reducing maintenance 
costs, and advancing predictive maintenance strategies. 
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INTRODUCTION 

Industrial motors are essential to contemporary businesses, driving vital operations in manufacturing, energy 
generation, and transportation systems. Unanticipated downtime or motor malfunction may lead to considerable 
financial losses, productivity interruptions, and safety risks. Historically, regular preventive maintenance has been 
used to mitigate these risks; however, such methods are often ineffective, as they may overlook early defect signals 
or result in unnecessary component replacements. To overcome these limitations, condition monitoring has 
emerged as a proactive approach, enabling continuous evaluation of motor health through sensor data processing. 
Recent breakthroughs in machine learning approaches have markedly enhanced the precision and efficacy of 
problem identification in industrial motors. Machine learning algorithms can identify complex patterns from 
multiple types of data, including vibration, current, and temperature, thereby facilitating timely problem 
classification and predictive maintenance. In contrast to traditional diagnostic approaches, machine learning 
algorithms possess the capacity to generalize across diverse motor types and operating conditions, thereby 
improving flexibility in practical settings. 

This research presents an effective machine learning technique specifically developed for the monitoring of 
industrial motor conditions. The approach emphasizes optimization and computational efficiency, ensuring strong 
performance with minimal processing overhead. Experimental validation confirms that the proposed system 
achieves high fault detection accuracy and reliability, thereby offering a scalable solution for real-time monitoring 
applications. This effort ultimately reduces maintenance expenses, extends motor longevity, and enhances 
industrial productivity. There remains a persistent need to reduce the operating and maintenance costs associated 
with induction motors (IMs). Regular monitoring of system health can substantially decrease these expenditures 
by facilitating the early identification of motor deterioration, enabling proactive responses that minimize 
unplanned downtime and unforeseen failures. Condition-based monitoring has thus emerged as a crucial 
responsibility for engineers and researchers, particularly in industrial applications such as railways, oil extraction 
mills, agriculture, and mining [1]. Maintaining and ensuring the proper functioning of industrial equipment is 
essential for every manufacturing enterprise. The standardization of production infrastructure and the 
implementation of systematic maintenance programs are fundamental to this process. Condition monitoring must 
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also be regarded as an integral component of smart manufacturing initiatives aimed at enhancing and optimizing 
operational efficiency. The lack of data-driven insights in industrial decision-making may result in safety hazards, 
overlooked fault indicators, or unexpected repairs that disrupt equipment operation [2]. 

A novel concept has been proposed that integrates a photovoltaic (PV) system with an induction motor (IM), 
combined with IoT-based monitoring tools. This method combines the energy-generating capabilities of PV 
systems with monitoring sensors enabled by the Internet of Things to address operational challenges. The use of 
solar energy delivers significant long-term savings and reduces environmental impact by decreasing reliance on 
fossil fuels. IoT-based monitoring sensors continuously collect real-time data on motor parameters such as 
temperature, vibration, and power usage [3]. The proposed system integrates IoT sensors to collect temperature, 
vibration, current, and voltage data, which is then analyzed using Support Vector Machine (SVM), a powerful 
machine learning technique effective in both classification and regression tasks. A prediction model is constructed 
to identify motor fault patterns, such as misalignment, bearing degradation, and electrical irregularities. IoT 
connectivity enables real-time monitoring and alerts for maintenance personnel upon the detection of anomalies, 
supporting preventive maintenance actions [4]. 

This work also introduces a technique for condition monitoring and operational assessment of induction motors 
using Fiber Bragg Grating (FBG) strain sensors. The methodology employs a comprehensive simulation workflow 
with ANSYS Multi-physics and COMSOL Multi-physics to precisely evaluate and analyze motor performance 
under standard operating conditions. A magnetic field intensity is generated in the induction motor using ANSYS 
Electronics to activate a magnetostrictive material, which then experiences mechanical stresses [5]. Another study 
presents a comprehensive method for condition monitoring, focusing particularly on the insulating integrity of 
various motors. The proposed approach employs a single monitoring apparatus capable of simultaneously 
overseeing multiple motors. By installing monitoring equipment at the grounding line of a distribution 
transformer’s neutral point, the total leakage current from all motors connected to the transformer can be measured 
[6]. 

Similarly, another study emphasizes condition monitoring with a focus on insulation integrity, utilizing a 
centralized monitoring apparatus for multiple motors. Monitoring at the transformer neutral grounding line allows 
for the measurement of leakage currents from all connected motors [7]. Research has also provided a comparative 
analysis of feature extraction methods for electric motor condition monitoring. Traditional statistical approaches 
and image embedding techniques were applied to a well-known time-series dataset representing healthy motors 
and seven distinct fault scenarios. These conditions were evaluated in both unloaded and loaded states at four 
different constant speed levels [8]. A further study proposes a diagnostic method for improving the reliability of 
stator core fault detection in three-phase induction motors. This project focuses on the design of an efficient online 
electrical monitoring system, addressing the impracticality of traditional core quality assessments that require 
complete motor shutdown, disassembly, or no-load operation. Such offline approaches are not only time-
consuming but also interrupt motor operations, reducing productivity. 

Advanced condition monitoring systems using machine learning techniques have been proposed for defect 
identification in AC motors. Conventional fault detection methods often suffer from long diagnostic times and 
reduced accuracy due to noise interference and system complexity. IoT-enabled smart monitoring systems present 
a potential solution by using real-time data from vibration, current, temperature, and gas sensors. These systems 
employ edge computing for preliminary data processing and cloud computing for predictive maintenance. For 
example, in industrial gas production facilities, compressors powered by medium-voltage electric motors 
represent critical assets where uninterrupted operation is essential [9]. Thermal imaging techniques have also been 
applied, with infrared cameras used to study the thermal behavior of three-phase induction motors under various 
operating conditions. Testing focused on motor windings, which are the most heat-sensitive components, 
revealing that infrared thermography is an effective diagnostic tool [10]. IoT applications have been extended to 
agricultural contexts as well, such as intelligent farm monitoring systems for single-phase DC motors, enabling 
real-time remote monitoring and control via the Internet. Sensor technologies integrated with IoT communication 
protocols allow for efficient monitoring of parameters such as voltage, current, speed, and direction [11]. In other 
industries, real-time monitoring has been applied to tire stacking machines using Node-RED, with integrated 
Grafana dashboards to record stacking data, machine failure information, and process cycle durations. The system 
provides both local and intranet-based access [12]. 
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Research has also focused on fundamental frequency variations in motor currents within speed-sensorless 
vector control systems and their implications for current signal demodulation. A novel method, the carrier-
reconstructed modulation signal bispectrum (CR-MSB), reconstructs carriers to eliminate extraneous components 
and applies phase alignment to mitigate random noise. This enables accurate extraction of nonlinear modulation 
features from current signals. To validate this method, a two-stage helical industrial gearbox was tested under 
varying lubricant conditions. Results showed that under fluctuating loads with inadequate lubrication, current 
sideband amplitudes displayed distinctive patterns useful for fault diagnosis [13]. Recent advances in electric 
motor status monitoring have culminated in the development of proprietary data fusion systems (DFS) for 
automated fault detection. DFS integrates assessments of currents, stray magnetic flux, and infrared data, all 
captured noninvasively with simple, cost-effective sensors. The system combines traditional stationary analysis 
methods, such as Motor Current Signature Analysis (MCSA), with modern transient analysis approaches. This 
hybrid technique has proven reliable for final diagnosis while maintaining low computational requirements. 
Findings confirm the efficacy of this system when applied to real industrial machines [14]. 

Wireless sensor networks (WSNs) have also been investigated for nonintrusive, real-time monitoring and 
diagnostics of industrial motors. The use of motor signature analysis within WSN architectures has demonstrated 
strong potential for energy monitoring and fault detection. However, challenges remain in managing wireless 
connectivity fluctuations, noise interference, and environmental impacts on communication reliability [15]. 
Further studies describe the design, development, and debugging of hardware architectures for remote monitoring 
and failure avoidance in three-phase induction motors. These systems detect faults such as overload currents, no-
load currents, surge voltages, imbalanced phase loads, and single phasing. Data is transmitted to centralized 
monitoring systems using TCP/IP protocols, allowing remote management and performance documentation [16]. 

In the case of Permanent Magnet Synchronous Motors (PMSMs), early condition monitoring is vital due to 
the risk of stator inter-turn short circuits, which remain a formidable diagnostic challenge. Recent research 
highlights the use of advanced time–frequency analysis methods for early detection, offering valuable industrial 
applications [17]. With the growing integration of industrial internet technologies, studies have emphasized the 
use of numerical simulations for generating fault data and incorporating monitoring functions directly into 
industrial equipment hardware and software [18]. As demands for safe, resilient, and efficient motor systems 
increase, performance monitoring throughout the system lifecycle becomes critical. Condition monitoring reduces 
maintenance costs, minimizes unexpected interruptions, maintains productivity, and ensures safe operations. 
Artificial intelligence and machine learning algorithms, particularly deep learning models, have demonstrated 
strong capabilities in analyzing large datasets and forecasting failures. For example, one study introduced a 
methodology using Long Short-Term Memory (LSTM) models to monitor operational states and detect faults in 
industrial lifts, confirming the viability of AI-driven predictive maintenance [19]. 

PROPOSED SYSTEM 

The proposed system for industrial motor condition monitoring is designed to deliver efficient, accurate, and 
reliable real-time fault identification. Industrial motors play a critical role across numerous manufacturing and 
processing sectors, where unexpected failures can lead to significant downtime, production losses, and increased 
maintenance costs. To address these challenges, the system integrates advanced machine learning methodologies 
with carefully designed preprocessing and feature engineering phases, resulting in a comprehensive solution that is 
both computationally efficient and practically feasible for deployment on industrial edge devices. As illustrated in 
Figure 1, the framework combines sensor data acquisition, preprocessing, optimized feature extraction, and 
machine learning–based classification to generate precise real-time motor health assessments, seamlessly interfaced 
with SCADA and CMMS platforms. 

The signals are pre-processed through signal conditioning and windowing to remove noise and 
ensure consistent sampling. For each window, time-domain features such as RMS, variance, skewness, 
and kurtosis are extracted, along with frequency-domain features derived from FFT and wavelet 
transformations, effectively capturing indicators of potential faults. Table 1 provides a comprehensive 
overview of the proposed system, detailing the input signals, processing modules, extracted features, 
and the final decision-making process for industrial motor health monitoring. 
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FIGURE 1. Workflow of the Efficient ML Algorithm for Condition Monitoring 

TABLE I.  INPUT SIGNALS AND THEIR PURPOSE IN FAULT DETECTION 

Component Details Purpose 

Input Signals 
Vibration (Accelerometer), Stator Current (CT), Temperature 

(Thermistor) 
Capture mechanical, electrical, and thermal 

variations for complete monitoring. 
Signal 

Conditioning 
Filtering, noise removal, ADC conversion 

Ensure clean, digitized signals for further 
analysis. 

Windowing 
Module 

Sliding window segmentation of sensor data Prepares uniform input for feature extraction. 

Feature 
Extraction 

Time-domain (RMS, variance, kurtosis), Frequency-domain 
(FFT, spectral centroid), Time–frequency (Wavelet energy) 

Extract fault signatures across multiple 
domains. 

Feature 
Optimization 

Recursive Feature Elimination (RFE) and PCA (95% variance 
retained) 

Reduce dimensionality and enhance 
computational efficiency. 

ML Classifier Linear SVM 
Classifies motor state into normal or specific 

fault type. 
Health State 

Output 
Normal, imbalance, misalignment, bearing fault, or electrical fault Provides real-time motor condition status. 

Alerting & 
Logging 

SCADA/CMMS integration with alerts and historical data storage 
Enables predictive maintenance and decision 

support. 

 

To improve efficiency, Z-score normalization is first applied, followed by feature selection using Recursive 
Feature Elimination (RFE), ensuring that only the most relevant features are retained. Principal Component 
Analysis (PCA) is then employed to reduce dimensionality while preserving 95% of the data variance. The refined 
features are fed into a linear SVM classifier, chosen for its balance of accuracy and computational simplicity. The 
classifier categorizes each input window into predefined states, such as normal operation, misalignment, imbalance, 
or bearing defect. Alongside the class label, the system also generates a confidence score, which is logged and 
integrated into SCADA or CMMS platforms for real-time monitoring and decision-making. Experimental results 
confirm that the proposed pipeline achieves real-time performance with minimal latency, making it well-suited for 
edge deployment. This design enhances predictive maintenance capabilities, reduces maintenance costs, and 
improves motor reliability across diverse industrial applications. 

The feature selection and dimensionality reduction stage plays a critical role in mitigating redundancy, 
overfitting, and high computational costs associated with large feature sets. Initially, low-variance and highly 
correlated features are eliminated using filter methods. Next, embedded approaches such as LightGBM and 
XGBoost leverage feature importance scores to retain only the most informative attributes. PCA may also be 
applied to further condense dimensionality while preserving essential data variation. This process ensures that the 
classifier receives optimized input, enhancing both accuracy and inference speed. At the system’s core, gradient-



International Journal of Modern Computation, Information, and Communication Technology      
2024;7(2):52-59. 
ISSN: 2581-5954 

 

56 
 

boosted decision tree ensembles (LightGBM or XGBoost) are employed for classification. These models are 
particularly effective for tabular datasets with heterogeneous feature types, offering strong predictive performance, 
efficient training, and low-latency inference. They also handle class imbalance through weighting techniques and 
provide feature importance rankings, which improve interpretability and support engineering insights into fault 
patterns. To ensure robustness, stratified k-fold cross-validation is used during training, while predictions from 
individual signal windows are aggregated through majority voting, thereby improving stability and reducing false 
positives. 

The deployment strategy emphasizes edge computing. The optimized model is compressed through quantization 
and pruning to reduce memory usage and improve inference speed. It is deployed on edge devices such as industrial 
gateways or embedded controllers, enabling real-time monitoring without heavy dependence on cloud connectivity. 
Local alert generation ensures timely responses, while only summary data or anomaly reports are transmitted to 
centralized dashboards. This reduces bandwidth demands and guarantees that critical defect information remains 
accessible for decision-making. By integrating robust preprocessing, comprehensive feature extraction, efficient 
feature selection, and lightweight yet powerful machine learning models, the proposed system delivers accurate, 
real-time industrial condition monitoring. Gradient-boosted tree methods strike an optimal balance between 
detection accuracy, interpretability, and computational efficiency, making them suitable for industrial 
environments. Furthermore, adaptive preprocessing mitigates sensor noise, while oversampling techniques such as 
SMOTE and class-weight adjustments address class imbalance. Transfer learning and progressive retraining allow 
the system to adapt seamlessly across different motor types and facilities, ensuring scalability and long-term 
usability. Ultimately, the proposed system enhances operational reliability by enabling early fault detection, 
minimizing downtime, reducing maintenance costs, and strengthening predictive maintenance strategies in modern 
industrial settings. 

RESULTS AND DISCUSSIONS 

The industrial motor sensor dataset [20], comprising approximately eight thousand records, provides valuable 
insights into motor behavior across diverse operating conditions. This dataset enables engineers and researchers 
to analyze motor performance, identify potential anomalies, and evaluate safety under varying workloads. The 
sensors capture critical parameters, including voltage, current, temperature, vibration levels, and associated danger 
levels, offering a comprehensive view of motor health. Table 2 presents a selection of sensor measurements, 
highlighting fluctuations in voltage, current, temperature, and vibration, with each record annotated to indicate 
the motor’s operational status. 

TABLE II.  SAMPLE SENSOR DATA FOR MOTOR CONDITION MONITORING 

Voltage (V) Current (A) Temperature (Â°C) Vibration (mm/s) Label 
460.01 1.79 118.33 22.37 high 
419.12 15.52 36.93 2.18 normal 
380.53 30.78 83.08 12.06 moderate 
382.82 12.5 54.33 4.48 normal 
375.38 6.89 41.57 3.2 low 

 

This dataset supports a wide range of applications, including feature correlation and trend analysis, time-series 
modeling and anomaly detection, risk level prediction, fault classification, and predictive maintenance. The 
intended users include data scientists, industrial Internet of Things (IoT) engineers, researchers in smart 
manufacturing, and machine learning practitioners focusing on time-series or classification models. Table 3 
presents the confusion matrix, which illustrates the classification performance of the proposed SVM model. Most 
samples are correctly classified (diagonal entries), while the off-diagonal entries indicate only minimal 
misclassifications. 

TABLE III.  CONFUSION MATRIX OF THE PROPOSED SVM CLASSIFIER 

Actual / Predicted High Normal Moderate Low 
High 590 6 3 1 

Normal 2 591 4 3 
Moderate 3 2 594 1 

Low 1 1 1 597 
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Figure 2 presents the efficiency metrics for each class, demonstrating consistently high accuracy, recall, and 
F1-scores across all motor condition categories. These results validate the SVM model’s balanced and reliable 
classification performance. 

 

FIGURE 2. Class-Wise Precision for Motor Condition Monitoring 

Figure 3 illustrates the performance metrics graph, highlighting the proposed SVM classifier’s superior 
accuracy, precision, recall, and F1-score. These results affirm its effectiveness and robustness in ensuring 
consistent industrial motor condition monitoring. 

 

FIGURE 3. Performance Metrics of SVM Classifier 

The proposed system faces challenges in real-time data collection, as noise and sensor drift can negatively 
impact monitoring precision. Managing large volumes of heterogeneous motor data requires efficient 
preprocessing and feature extraction to ensure reliability. Model generalization may also be limited when applied 
across diverse motor types and operating conditions. Furthermore, achieving scalability for deployment in large-
scale industrial sectors demands careful optimization of computational resources. Finally, integrating predictive 
maintenance insights into existing industrial operations presents a significant challenge, requiring seamless 
compatibility with industrial IoT frameworks. 

CONCLUSION 

This study proposed an effective machine learning methodology for monitoring the condition of industrial 
motors using an SVM classifier. The proposed approach achieved high accuracy, precision, recall, and F1-scores 
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across multiple motor health states, confirming its effectiveness in distinguishing between high, moderate, low, and 
normal operating conditions. The results demonstrate that SVM can reliably analyze multi-sensor data, enable 
accurate defect identification, and support timely interventions to minimize downtime and reduce maintenance 
costs. Furthermore, class-wise performance validated the model’s balanced and consistent behavior, reinforcing its 
suitability for industrial applications. Future enhancements could involve the integration of deep learning models 
to capture more complex and non-linear motor defect patterns. Real-time deployment through edge computing and 
Industrial IoT (IIoT) frameworks may further improve scalability and adaptability across diverse motor types. In 
addition, cloud-based predictive maintenance solutions could be employed for continuous monitoring, historical 
trend analysis, and intelligent decision-making support. By pursuing these future directions, the proposed 
framework has the potential to evolve into a comprehensive solution for intelligent, automated, and cost-effective 
industrial motor health management. 
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