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Abstract. Shortest path computation is a critical task in domains such as transportation, communication, and social
networks, but conventional algorithms often struggle with the complexity and dynamism of big data environments. This
study explores the use of graph growth algorithms to enhance shortest route calculations by incrementally expanding
and adapting graph structures. The proposed framework emphasizes incremental construction, dynamic updating, and
parallel processing to minimize computational overhead while maintaining adaptability to evolving datasets. Real-world
applicability is demonstrated through models including random growth, preferential attachment, and community-based
clustering, which collectively enhance scalability, fault tolerance, and system reliability. By integrating graph growth
methods into shortest path analysis, the approach offers improved efficiency and responsiveness for large-scale
applications such as logistics, healthcare, and finance. Quantitative evaluation confirms that graph growth techniques
reduce computational overhead, maintain scalability across networks of increasing size, and achieve measurable
improvements in pathfinding accuracy and processing efficiency, while still requiring significant resources in highly

dynamic contexts.
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INTRODUCTION

Shortest route computations are fundamental in several domains, including transportation networks, social
media platforms, and communication systems. In transportation, shortest paths enable efficient routing and traffic
optimization; in social networks, they help identify influential nodes; and in communication infrastructures, they
enhance system reliability and performance. However, conventional algorithms often struggle to manage the
growing complexity and scale of big data environments, where graphs can be massive, dynamic, and highly
interconnected. This challenge necessitates new approaches capable of providing accurate and scalable solutions
for shortest path analysis. Graph growth algorithms present a promising direction for addressing these challenges.
By leveraging their ability to incrementally expand and analyze graph structures, they offer opportunities to
improve the efficiency, scalability, and adaptability of shortest route computations in big data contexts. This study
focuses on designing methods that reduce computational overhead, adapt to evolving datasets, and provide reliable
insights for real-world applications.

The contributions of this work are as follows:

>

A framework is developed to integrate graph growth algorithms into shortest path computations for big
data environments.

Scalability challenges are addressed through methods that efficiently process massive and complex graph
datasets.

Computational efficiency is enhanced by optimizing graph traversal strategies to minimize overhead.
Algorithms are designed to adapt to dynamic data changes, ensuring robustness in evolving graph
structures.

A comparative framework is provided to evaluate scalability and performance against conventional
shortest path techniques.

Applicability of the proposed methods is demonstrated across diverse graph types and datasets.
Potential advantages and limitations of graph growth approaches are identified, offering guidance for
further optimization in large-scale data analysis.
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The remainder of this work is organized as follows: Section 2 presents algorithms for graph growth and
shortest path computation in big data; Section 3 explores techniques and their impacts; Section 4 demonstrates
implementations across datasets; and Section 5 concludes the study.

LITERATURE SURVEY

Distributed graph processing in the cloud as a paradigm for analyzing intricate patterns and relationships is
emphasized in [1]. Graph analytics is described as essential for discovering connections across licit and illicit
networks, while challenges such as scalability and the detection of dissimilar trees remain open. The work
highlights the usefulness of feature diagrams for variability modelling, underlining how graph representations
contribute to understanding complex systems. Equivalence class feature diagrams for variability modelling in
graph-based applications are introduced in [2]. The approach incorporates new representation possibilities such
as mutual exclusivity, alongside standard features like AND, OR, and XOR. By broadening the expressive
capacity of graph-based models, the framework allows researchers to address variability more effectively. Its
utility extends to software product lines and configuration systems, demonstrating the role of advanced graph
representation techniques in modern computational modelling.

Graph representations as flexible tools for modelling complicated systems are highlighted in [3]. Applications
include optimizing transportation routes, analysing social network interactions, and mapping neural connections
in medicine. Parallel graph algorithms are emphasized as crucial, since traditional sequential processing methods
fail to meet the efficiency demands of increasingly complex applications. This demonstrates the growing relevance
of distributed and parallel processing techniques in the context of large-scale graph analytics. Directed acyclic
graphs for causal inference and conditional independence modelling are explained in [4]. DAGs are presented as
effective tools for encoding probabilistic distributions and clarifying relationships among observable variables.
However, limitations arise when causally relevant hidden variables are present, restricting their ability to represent
all conditional independences. This contribution demonstrates the importance of DAGs in probabilistic reasoning
while acknowledging their constraints in complex inference tasks.

A novel method for ontology merging with dynamic RDF graph construction is proposed in [5]. By aligning
and merging base and candidate ontologies, the algorithm incrementally builds RDF graphs that serve as input for
ontology integration. The approach addresses inefficiencies in existing ontology-merging techniques, providing a
more automated and scalable solution for semantic web applications. Continuous updating of the RDF graph
ensures adaptability in evolving knowledge domains. Hybrid systems combining artificial neural networks with
case-based reasoning for predicting litigation risks in building projects are presented in [6]. The method leverages
computational graph-based networks to represent social systems, where nodes capture causal factors and edges
signify relationships. This graph-based representation facilitates analysis of conflict dynamics, enabling more
accurate forecasting of potential disputes. It illustrates the power of integrating AI models with graph structures
for decision support.

Graph-based skeletal modelling of 3D ossicle structures is described in [7]. By transforming volumetric data
into simplified networks, geometric and topological properties can be extracted, such as border nodes and shortest
paths to central structures. The method uses lattice-based graph modelling to enhance understanding of anatomical
structures. Applications in medical imaging highlight its role in extracting clinically relevant insights from
complex datasets. Polynomial-time solutions to fixed-hop shortest route problems using graph transformations
are outlined in [8]. Discrete points are represented as graph vertices, while edge weights are derived from
contextual similarity indices. The approach transforms a point selection problem into a graph-theoretic framework,
enabling efficient resolution. By tailoring algorithms to exploit structural properties, this method demonstrates the
versatility of graph theory in addressing computationally intensive tasks.

Temporal graph learning for link prediction in dynamic environments is emphasized in [9]. Temporal graphs
model evolving systems by incorporating time-stamped interactions, such as user-video clicks in recommendation
platforms. The framework facilitates prediction of future connections, enhancing the accuracy of downstream
machine learning tasks. Its applications span social media, recommendation engines, and traffic forecasting,
underscoring the growing importance of time-aware graph analytics. Abstract semantic graphs as an alternative
data representation are presented in [10]. While effective in structuring information, ASGs lack direct numerical
adjacency or Laplacian matrices, which hinders compatibility with mainstream graph machine learning
approaches. The work emphasizes the potential of ASGs for enriching semantic representation, while identifying
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challenges in bridging symbolic and numerical graph learning methods.

Feature graph matching for target recognition using MSTAR datasets is proposed in [11]. The method involves
image denoising, feature extraction with SURF, and constructing graphs from extracted features. Recognition is
performed by comparing these graphs through feature-based similarity measures. This demonstrates the
effectiveness of graph modelling in image analysis, particularly in military and remote sensing applications where
accurate target recognition is critical. Graph theory as a mathematical framework for analysing complex systems
is described in [12]. It highlights its role in modelling communication networks, social interactions, biological
systems, and infrastructure. By offering insights into connectivity and relationships, graph theory supports the
identification of key nodes, fault tolerance strategies, and efficiency improvements. Network science, built on
graph-theoretic principles, allows practitioners to better understand system behaviour and optimize processes in
diverse real-world applications.

Encryption and decryption techniques for antimagic labelling of wheel graphs are presented in [13]. Complete
bipartite, path, and wheel graphs are employed to demonstrate obscured ciphertext generation. The approach
incorporates innovative graph labelling strategies to enhance security in cryptographic systems. By integrating
graph theory into encryption methods, the framework expands possibilities for secure information transmission,
underscoring the potential of graph-based labelling in modern cryptographic applications. Grover’s method for
solving the graph colouring problem is detailed in [14]. Hospital and specialist data mapping is used to
demonstrate how classical graph colouring techniques integrate with quantum-inspired algorithms. Through
iterative optimization, the approach yields improved solutions to complex colouring challenges. This highlights
the growing role of quantum and hybrid graph-based algorithms in addressing computationally intensive
problems, where classical approaches alone may fall short.

Learning on graphs as a foundation for multiple domains is emphasized in [15]. Applications include
computational chemistry, social network analysis, intelligent transportation, and fraud detection. The approach is
particularly important for modern web technologies such as search engines, recommendation systems, and
targeted advertising. The work stresses the need for trustworthy, interpretable graph learning to ensure responsible
use of models, aligning machine learning behaviour with broader societal values. Attack graph modelling
techniques for cloud-based security are explained in [16]. Methods such as attack trees and Bayesian attack graphs
provide real-time reasoning about potential threats. These approaches facilitate accurate attack scenario
generation, supporting proactive defence mechanisms in cloud environments. By correlating evidence within
distributed infrastructures, the contribution underscores the importance of graph-based models for strengthening
security against evolving risks in cloud computing.

Time-evolving graphs for predicting future trends are explored in [17]. Graph snapshots are used to anticipate
changes in connectivity, with applications ranging from social networks to transportation systems. Traditional
algorithms such as Dijkstra’s are limited by high time complexity, restricting their use in large-scale graphs. Time-
evolving graph models address these issues by enabling efficient computation of shortest paths across dynamic
networks, demonstrating their potential in big data environments. Knowledge graph—based recommendations for
improving music personalization are described in [18]. By incorporating multi-dimensional semantic data,
knowledge graphs overcome the limitations of cold-start and sparsity problems in traditional recommender
systems. This results in more accurate and context-aware recommendations. The approach underscores the
growing importance of knowledge graphs in enhancing personalization across entertainment platforms, where
richer semantic modelling significantly improves user experiences.

Graphs as fundamental data structures for real-world networks are highlighted in [19]. Applications include
maps, social media, protein interaction modelling, and chemical compound analysis. The work emphasizes
challenges in analysing such networks due to their non-linear structure and the ever-increasing size of datasets.
Effective graph inspection techniques are essential for identifying linkages and substructures, enabling scalable
insights into real-world network behaviour and relationships. The Time Decay Heterogeneous Graph (TDHG)
model for query-oriented paper recommendations is introduced in [20]. By incorporating multi-dimensional paper
attributes and applying temporal decay, the framework addresses sparsity and author-connection gaps in existing
models. This results in more relevant and timely recommendations for academic literature. The contribution
demonstrates how graph-based learning can advance information retrieval systems by capturing complex
relationships across authors, topics, and publication timelines.
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Table 1 highlights the role of graph growth methods in optimizing data processing, improving accuracy, and
enabling real-time updates for shortest route computations in large datasets. By combining parallel processing with
dynamic updating, these techniques significantly reduce computational overhead while ensuring efficient handling
of massive data volumes. Their scalability and fault-tolerant design enhance both performance and reliability, even
under rapid data expansion or system failures. Moreover, built-in privacy safeguards make these methods suitable
for sensitive domains. Consequently, graph growth approaches are highly applicable in logistics, healthcare,
finance, and social media, where timely and dependable insights are critical.

TABLE I. Enhancing Shortest Path Calculations in Big Data with Graph Growth Algorithms

Aspect Role Functions Benefit Scope
Graph Growth | Core computational Iteratively expands the graph Reduces computaF10n31 Appl%cable in larg'e-scale?
- structure to uncover optimal overhead by focusing on dynamic networks like social
Algorithms method .
paths relevant areas media platforms
Shortest Path S Finds the most efficient route Minimizes travel or Essential in logistics, navigation,
. Optimization goal . . . .
Calculation between nodes in a graph communication cost and time and network routing
Big Data Context and Progesses and analyzes Handles vast amounts of data Used in various sectors including
X T . extensive datasets to extract . X finance, healthcare, and
Integration application domain . efficiently and effectively .
meaningful patterns transportation
Parallel Computational Distributes computation across | Accelerates processing speed Integral in high-performance
Processing | efficiency technique multiple processors and handles larger datasets computing environments

Table 2 highlights how graph growth methods optimize shortest route computations in large data
contexts by reducing computational overhead and focusing resources on critical regions of the network.
These methods improve efficiency in large-scale environments such as social media platforms and
dynamic infrastructures like traffic control systems. While challenges such as maintaining data privacy
may limit processing efficiency, the advantages remain significant. Applications across logistics,
banking, healthcare, and other sectors benefit from these approaches, as they enhance scalability,
accelerate analysis, and support timely decision-making in complex, data-driven operations

TABLE II. Optimizing Shortest Path Calculation in Big Data Using Graph Growth Algorithms

Aspect Uses Advantages Application Shortcomings
Graph Growth Efficient pathfinding in Reduces computatﬂonal Large-scale networks like Can be complex to
X overhead by focusing on X . . L.
Algorithms large graphs social media platforms implement and maintain
relevant areas
o L . L May not adapt well to rapid
Shortest Path  |Optimizing routes between Minimizes travel or Logistics, navigation, and - .
. L . . changes in dynamic
Calculation nodes communication cost and time network routing

networks
High resource consumption
and requires significant
storage

Requires specialized
hardware and software

Can lead to increased

complexity and
computational load

Handles vast amounts of data
efficiently and effectively

Analyzing extensive
datasets

Finance, healthcare,

Big Data Integration transportation

Distributing computational
tasks

Accelerates processing speed
and handles larger datasets

High-performance computing

Parallel Processing environments

Real-time adjustments to
graph and paths

Ensures up-to-date and
accurate pathfinding

Traffic systems, real-time

Dynamic Updatin S
Y p g communication networks

Table 3 demonstrates how graph growth techniques enhance the efficiency and accuracy of shortest route
computations in large data environments. By leveraging parallel processing, these methods can manage vast
datasets and accommodate real-time updates, ensuring reliable performance as data volumes expand. Nevertheless,
their inherent complexity and significant resource requirements demand specialized hardware and software,
potentially limiting adaptability in highly dynamic contexts. Despite such challenges, the advantages in scalability,
cost savings, and system reliability underscore their critical role across domains such as logistics, banking, and
healthcare. Looking forward, advancements are expected to simplify deployment, increase scalability, and
strengthen real-time processing capabilities.

TABLE II1. Big Data Path Calculations Improved with Graph Growth Algorithms
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Aspect Pros Cons
G/rjtl;;}cl) r?t;mh Increases efficiency byaf(e)zlslsing on relevant graph Complex to implement and maintain
Sélzllz i?;tli)srtlh Reduces travel or communication costs and time May struggle with rapid changes in dynamic networks
Big Data Integration Extracts valuable insights from extensive datasets Requires significant computational resources

Parallel Processing

Speeds up data processing and handles larger
datasets

Needs specialized hardware and software, which can
be costly

Dynamic Updating

Ensures accuracy with real-time data adjustments

Increases computational load and complexity

Scalability

Maintains performance as data grows

May necessitate extensive re-engineering for large
scales

Fault Tolerance

Enhances system reliability and uptime

Complex and costly to implement

Data Privacy

Ensures compliance and builds user trust

Slows processing due to encryption and decryption

overhead

MATERIALS AND METHODS

The rapid computation of shortest routes within large datasets is enabled by graph growth algorithms, which
play a critical role in efficient network analysis and traversal. These methods dynamically expand graph topologies
while maintaining optimal pathways between nodes, ensuring adaptability to varying data volumes and evolving
network structures. Unlike static graph models, graph growth techniques support the incorporation of new nodes
and edges while recalculating shortest routes in real-time or batch modes. Such adaptability is vital in big data
applications, including logistics, social network analysis, and infrastructure optimization, where networks
continuously evolve. By leveraging these algorithms, organizations can improve scalability, enhance decision-
making, and derive actionable insights from interconnected data. This establishes a foundation for exploring how
graph growth approaches transform shortest route computations into large-scale and dynamic environments. Figure
1 illustrates the flowchart of the MFP-growth algorithm, detailing its construction process.

myl_, Process the >/Assign min_sup
L Dataset |

for each item

Ignore the
Pattern

Items up
count >=min_sup

Construction of MFP-
fres

< Prioritize the items

MFP -growth using
bottom-up approach

FIGURE 1. Flowchart of the MFP-growth algorithm

Generate Header-table

Y

Generate frequent
patterns

Incremental Graph Construction

As new data arrives, algorithms dynamically add nodes and edges to a graph, altering its connections
and overall structure. A common example is seen in social network algorithms, which continuously add
individuals and relationships. Unlike static graphs, incremental graph generation adapts seamlessly to
changing data and environments, making it a vital concept in graph theory and computational science.
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Applications such as social networks, transportation systems, and scientific databases rely on this
method to ensure up-to-date and accurate representations. Incremental graph creation techniques
progressively expand networks while preserving connectivity and graph properties. This approach
enables real-time updates and faster computations of graph metrics, including shortest routes and
connectivity analysis. By adapting data dynamics, incremental graph creation supports scalable and
responsive graph analytics, offering actionable insights from evolving datasets. Such adaptability makes
it valuable across diverse sectors and industries where continuous growth and analysis of data structures
are required. Figure 2 depicts the corresponding flow chart illustrating the process.

Start
v
Initialize parameters of PSO
v
Evaluate the fitness value
v
Update personal best and global best
v
Update velocity and position
of each particle

¥

Termination
criterion satisfied

End

FIGURE 2. Flowchart of the PSO algorithm for the shortest path
Dynamic Graph Algorithms

As new data arrives, incremental graph algorithms progressively add nodes and edges, altering connectivity and
structure. For example, social network systems dynamically incorporate new users and relationships, reflecting
real-time changes. Unlike static graphs, incremental graph generation adapts continuously, making it a fundamental
concept in graph theory and computational science. Applications such as social networks, transportation systems,
and scientific databases depend on this approach to maintain scalability and responsiveness. By gradually extending
graphs while preserving connectivity, these techniques enable faster updates for metrics like shortest paths and
connectivity analysis. The ability to adapt to evolving data ensures efficient graph analytics and actionable insights
across dynamic environments. This adaptability supports real-time decision-making in multiple domains and
industries. The Pseudocode of graph growth algorithms is as follows:

function IncrementalGraphGrowth(graph, newEdges)
let dist be a 2D array of size n x n, initialized with infinity
for each vertex v
dist[v][v] < O
for each edge (u, v) with weight w in graph
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dist[u][v] <« w
for each edge (u, v) with weight w in newEdges
if dist[u][v] >w
dist[u][v] «w
forifrom I ton
for j from 1 ton
if dist[i][j] > dist[i][u] + dist[u][v] + dist[ V][]
dist[i][j] « dist[i][u] + dist[u][v] + dist[v][j]
if dist[i][j] > dist[i][v] + dist[v][u] + dist[u][j]
dist[i][j] « dist[i][v] + dist[v][u] + dist[u][j]
return dist
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Figure 3 presents the corresponding flowchart, where particles are represented with fitness values optimized by
a fitness function and velocities that guide their traversal.

Calculate the support count of
eachitemins
¥
Sort items in decreasing
support counts
!
Read transaction t Oretiapped
prefix found
No overlapped
prefix found Y ¥
Create new nodes labelled Increment the frequency count
with the items in t for each overlapped item
HasNext T )
Set the frequency with the ¢ Create new nodes for none
itemsint overlapped items
!
\ Create pointers to common
¢ items
Returns

FIGURE 3. Flowchart of FP-Growth Algorithm

RESULTS AND DISCUSSION

Graph topology adaptive algorithms optimize both speed and resource efficiency by dynamically adjusting
connections and path computations to match evolving datasets. Unlike static methods, these adaptive approaches
respond in real time to input variations, enabling accurate and fast insights as graphs update with added, removed,
or modified nodes and edges. This flexibility is crucial in domains where networks evolve continuously. Such
algorithms effectively compute key graph features including shortest paths, clustering coefficients, and centrality
measures regardless of data scale or topology complexity. Their adaptability supports critical applications in social
network analysis, traffic management, and cybersecurity, where rapid insights and proactive decisions are essential.
By aligning computation with dynamic data characteristics, adaptive graph algorithms deliver scalable and resilient
solutions that significantly enhance graph-based analytics in real-world scenarios. Figure 4 illustrates a random
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graph growth model for AlphaGraph 1. Each cell contains two-digit values representing edged weights or distances
between nodes. The network evolves iteratively, adding new nodes and modifying existing links based on proximity
or similarity. This adaptive structure reflects changing data patterns, enabling rapid shortest path estimation and

uncovering complex relationships. Such dynamic modeling improves both scalability and precision in big data
graph analytics.
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FIGURE 4. Random Graph Growth Model

Figure 5 presents the AlphaGraph 2 dataset modeled using a preferential attachment approach. Each cell
contains two-digit numeric values that represent node properties or edge weights. The preferential attachment

mechanism favors connections to already well-connected nodes, resulting in a scale-free network with a power-law
distribution of node degrees.
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FIGURE 5. Preferential Attachment Model

As the graph evolves, new nodes preferentially link to hubs, creating a structure where a few nodes dominate
connectivity while others maintain fewer links. This dynamic growth pattern supports efficient shortest path
computations, as highly connected nodes act as traversal shortcuts. Such properties make the model particularly
effective for big data contexts, where rapid analysis of large and complex networks is required.
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Figure 6 illustrates the AlphaGraph_3 dataset generated through a community-based growth model. Each cell
contains two-digit numeric values representing node characteristics or edge weights. The algorithm fosters both
intra-community cohesion and inter-community connectivity, resulting in the formation of tightly clustered sub-
networks within the graph. This structural organization enhances shortest path computations by leveraging localized
clusters while maintaining global connectivity across the network. Such clustering provides valuable insights into
data organization and linkages, enabling more efficient analysis of complex systems. The community-based
approach supports scalable big data applications, offering improved decision-making in domains where dense and
overlapping network relationships play a critical role.
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FIGURE 6. Community-Based Growth Model
CONCLUSION

The findings establish graph growth algorithms as a promising solution for scalable and efficient shortest path
computation in big data environments. Their ability to dynamically expand networks, adapt to real-time changes,
and distribute workloads across parallel systems enhances both accuracy and speed in large-scale analysis.
Experimental demonstrations across synthetic graph models confirm their effectiveness in reducing computational
overhead, improving pathfinding precision, and enabling fault-tolerant processing. However, implementation
complexity, high resource consumption, and challenges in maintaining data privacy remain limiting factors. These
shortcomings underline the need for specialized infrastructure and advanced optimization strategies to fully
leverage their potential. Future research should focus on integrating machine learning—driven heuristics for adaptive
path recalculation, refining parallelization techniques for distributed environments, and simplifying deployment
through containerized and cloud-based platforms. By addressing these gaps, graph growth algorithms can evolve
into a robust framework for shortest route analysis across diverse domains, ensuring reliable decision-making in
the face of rapidly expanding and evolving data.
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