International Journal of Modern Computation, Information and Communication
Technology, 2018;1(2):83-87.

ISSN: 2581-5954

http://ijmcict.gjpublications.com

Research Article

Query Execution and Optimization in Distributed Database Environment
Muhammad Haroon*

Department of Computing and Information Technology, University of Gujrat Lahore Sub Campus,
Lahore, Pakistan.

*Corresponding author’s e-mail: haroon.capricorn@gmail.com

Abstract

Query optimization refers to the execution of a query in earliest possible time by consuming a
reasonable disk space. A query execution plan is generated before execution and the optimal operator
tree is got in the search space. Research with different examples is conducted in the present work by
providing up to date information and example work.

Keywords: Query optimization; Query processing; Query execution; Distributed Database.

Introduction

The global success of databases
especially at commercial level is very much
dependent on the query optimization. SQL
queries run on a specified time but as we know,
as Joins are very useful in SQL queries on one
hand, they are much expensive on the other hand
[1]. A join and non-join query imparts a
handsome difference in terms of time cost. The
query that works according to our requirement is
not always useful for us i.e. if data is updating on
non-bearable time. We need to optimize query
for better performance. This is actually called
Query Optimization [2]. It becomes more
challenging if this is need to be done in
distributed database systems where there are
many replications and fragments spread over
different servers and platforms.

Query processing

Query processing involves the
conversation and translation of high level SQL
query into some low level instructions that
database engine can read and execute the query
[3]. As shown in Fig. 1, the inputted SQL query
is first parsed by Query Parser and then
translated by Query Translator. It is optimized
then and move towards Execution Engine where
required result is achieved. In distributed
database system environment, the query is

broken down in different steps and then
forwarded towards the fragments for execution.

Query Translator Query Parser SQL Query —o INPUT

y

Distributed Query Execution Plan
Optimizer Generator

Evaluate Engine

.

Fig. 1. Query processing

Query optimization

Executing a query by controlling and
limiting space and time refers to Query
Optimization. Every query gives same result but
the query with best time and space average is
what we need to have and use professionally.
Referring to Fig. 1, the step ‘Distributed Query
Optimizer’ is the step where optimization of
query is performed. The Query Execution Plan
(QEP) is generated which is the plan to optimize
query by considering all parameters [3].

Query optimization description

In relational databases, first task is to
analyse the SQL query for its possible

Received: 05.09.2018; Received after Revision: 20.09.2018; Accepted: 21.09.2018
©2018 The Authors. Published by G. J. Publications under the CC BY license. 83

http://ijmcict.gjpublications.com/
mailto:haroon.capricorn@gmail.com

Muhammad Haroon, 2018.

optimization. There are some cases where query
optimization becomes NP-Hard problem i.e.
where number of relations in query is not fixed.
The second task is to determine the access
strategy i.e. sequential scan or index.
Sample join query is:
SELECT admin.*
FROM employee e, admin a, student s, teacher t
WHERE e.id = a.id AND a.id = s.id AND s.id =
t.id

The execution plan for this query will be:
To execute join based query, related tables must
be located on same server or at least related
fragments on same server [4]. With these, one
must specify access strategy with redistribution
prior to the join.
The module that does query optimization is
called Query Optimizer.

Components of query optimizer

Query Optimizer obtains query from query
translator after parsing from query parser and
works on three components:

I. Search Space

ii. Search Strategy

iii. Cost Model

Search Space

Search Space refers to all feasible sets of
operator tree for a join or cartesian product query
(Fig. 2). Permutations of the join order in a query
imparts a meaningful effect on the execution
plan of the query. In comparison of Fig. 3 and
Fig. 4, the query gives same result but there is a
difference in join permutation that leads to a cost
difference between the two. Search space is
actually to having all the possible and feasible
permutation of operator tree of SQL query [5].
The same case occurs with the cartesian product
based queries. Similarly with the joins, the
cartesian product is also a costly functionality to
use and there need to be very careful to use this.
Cartesian product also generates very much
permutations and acquire a large search space
which requires very carefulness dealing with
this.

Limitations of search space

Number of alternative operator trees for a
query by applying commutative and associative
rules isO(N ") which becomes un-economical in
case of a complex SQL queries including many
numbers of relations and operators (joins or

Query processing and optimization in distributed database systems

cartesian products) because factorial elevates
exponentially [3].

Result

I

j1

X student

employee admin

Fig. 2. Operator tree for Cartesian Product Query

Result
i3

| j2 | | teacher |

| jl | | student |

| employee | | admin |

Fig. 3. Operator tree for Join Query (A)

Result

’ teacher ‘

’ student ‘

EnlET

Fig. 4. Operator tree for Join Query (B)

The other limitation or restriction is to
apply needless heuristics that generates the
useless operator trees in search space which is
not recommended at all. For example, the
possible operator trees are having joins and
cartesian operator trees whereas there may be a
case where cartesian product trees are not
required.

©2018 The Authors. Published by G. J. Publications under the CC BY license. 84

Muhammad Haroon, 2018.

Orientation of the operator trees is also a
limitation. An SQL query produces two operator
trees Fig. 3 and Fig. 4. The both trees have
different orientations in which one is more
economical than other. In this way, there is a
restriction over orientation of operator trees. In
distributed environment, the tree in Fig. 4 looks
more economical due to its parallelism in joins.

Search strategy

Query optimizer uses search strategy to
produce the best operator tree by applying the
approach of dynamic programming. As the
dynamic programming is a deterministic
approach, so the technique is to produce operator
tree step by step. Dynamic Programming uses
breadth first search (BFS) to calculate the best
one and discard the rest to avoid the wastage of
search space [6]. On contrary, the Greedy Search
approach produces only one plan which is the
best by not doing exhaustive search. It uses
depth first search (DFS).

Fig. 5 shows the query optimizer actions
in deterministic strategy done by dynamic
programming of the same query we’ve discussed
before. It progresses step by step by executing
one join, then second and so on. But this
approach becomes expensive in case of too many
relations and operators.

Cost model

The model that describes the cost of the
query execution in the system. It is the estimated
cost of a complete plan for the operator trees in
the search space.

Cost model in DBMS

Cost model in Database Management
System (DBMS) depend upon various factors
that includes: Access Type, Selection of optimal
operator tree, CPU and 1/O cost etc. The access
type refers to the method of accessing data from
database i.e. sequential scan or index based [7].
Of course the sequential scan requires more cost
than index scan because in sequential scan, there
need to be full scan of the relations by looking
up tuples one by one that requires more time and
space cost. On the other hand, the index based
scan does not require that much time and cost
space.

The selection of optimal operator tree is
also very important in determining the cost. As
we discussed, the operator tree can be generated

Query processing and optimization in distributed database systems

by different means and all the operator trees give
the same result but it makes a lot of difference in
their cost calculation. This is why, the selection
of operator tree means a lot in calculating the

cost.
(]
employee | | admin
!
(7]
| jl | | student |
employee | | admin |
!
Result
h
j2		teacher
jl		student
employee		admin

Fig. 5. Query Optimizer Actions in Deterministic
Strategy

The peripherals cost like CPU and 1/0
cost also matters because these parameters are
directly proportional to the execution time of the
system.

Total Cost =CPU Cost + | /O Cost

Whereas:

CPU Cost=Unit Instruction Cost x Number of Instructions
The total cost is accumulation of CPU Cost and
the Input Output Cost and the CPU works on the
unit instruction cost by the number of
instructions.

©2018 The Authors. Published by G. J. Publications under the CC BY license. 85

Muhammad Haroon, 2018.

Cost Model in Distributed DBMS

Execution of query in distributed
database management systems is different from
centralized database management system [8]. In
distributed environment, an SQL query is sent to
different fragments and replicated segments for
execution. There are two types of time
consumptions in distributed environment i.e.
Total Time and Response Time. Total Time is
the sum of all time consumptions while
executing the query by ignoring the concurrency
factor. Whereas the Response Time is the time
that a user has to wait for the result of a query by
considering concurrency factor [9] Concurrency
is one of the most important factors while
dealing with database.

A query is executed in various phases.
The operator trees in search space is split into
various phases. Let there is an operator tree T.
P(T) s the set of phases of operator tree T.

o € P(T)is one individual phase of operator tree

T.
@(8)is the set of operations i.e. joins or

cartesian products of a phase ¢ .

The total time is the time of all the operations
while executing the query. In distributed
environment, it is stated as:

Total Cost =CPU Cost + | /O Cost

+ Communication Cost

CPU Cost=Unit Instruction Cost

x Number of Instructions

Communication Cost=Query Initialization Cost

+ Transmission Cost

Total cost is very much like the cost of
centralized DBMS but there is an extra
parameter i.e. communication cost which is the
cost of the distributed communication of sending
and receiving time from multiple fragments
resided on multiple servers or platforms and that
communication cost is defines as the sum of
query initialization and the transmission cost.
There are some pipelined operations as well in a
phase. These are such operations that are in
waiting queue and pipelines to be executed in
response of some query result. The pipelined
operations play vital role while calculating the

response time of a query execution.
2(9)

ResponseTime= z ExecutionTime(i) + PipelineWait (i)
i=1

The response time is the summation of

Query processing and optimization in distributed database systems

the execution time (time to execute a query) and
pipeline wait (time to deliver a phase) of all
operations in a query (i=1 to ¢(5)).

The Execution Time is the time that is
combination of the time to execute an operation i
and the transmission time of getting some result
and forward to some other process [10]. It also
depends upon the selected algorithm. For
example, in Fig. 3, the first join operation is
performed and rest are pipelined. Then the result
of first join operation is executed with the other
join and so on. The transmission time is actually
the management of this trading. In distributed
environment, it is the major challenge to
minimize this transmission time. With the
reference to Fig. 1, the execution time can be
defined as:

ExecutionTime(i) =Transmit Time(i)

+max (cost,,,, (join(j1, student)), Transmit Time(j1))

This is an example formula for above mentioned
query and operator tree in Fig. 3.

In distributed DBMS, different fragments
and the replicated pieces of database are spread
over multiple sites and multiple servers so the
query execution needs to go to every fragment to
check predicates and to get relevant data and of
course there are some communication links in
between these sites and servers which result in
communication and transmission cost [5]. For
example, there is a database spread over four
sites and there are some communication links in
between the sites as shown is Fig. 6.

Fig. 6. Distributed Database Fragments Structure
over four sites

There are four sites site 1, site 2, site 3
and site 4 with communication links w, x, y and
z. The total time of a query execution over this
structure will be:

©2018 The Authors. Published by G. J. Publications under the CC BY license. 86

Muhammad Haroon, 2018.

Total Time=Query InitializationTime x 4

+UnitTransmissionTime x (W+ X+ Y +2)

And the response time will be:
Re sponseTime=

time to send w from sitel to site2,
time to send x from site2 to site4,
time to send y from sitel to site4,
time to send z from site3 to site4
time to send w from sitel to site2=

Query Initialization Time + unit transmission x w
time to send x from site?2 to site4=

max

Query Initialization Time + unit transmission x x
time to send y from sitel to site4=

Query Initialization Time +unit transmission x y
time to send z from site3 to site4=

Query Initialization Time + unit transmission x z

This is how one can calculate the costs in
distributed environment.

Conclusions

Query optimization is always been under
discussion and research for years. This is one of
the important and challenging tasks in database
systems area. In addition to distributed
environment, it becomes more interesting and
difficult too. Query processing is also somehow
complex with distributed DBMS and hence
query optimization too. The understanding of
distributed system is required to tackle this issue
and write about it. Minimize the cost factor is
actual challenge to deal with.

Conflicts of interest
Authors declare no conflict of interest.
References

[1] Ozsu MT. Valduriez, P. Principles of
Distributed Database Systems. Prentice-
Hall, Inc., NJ, USA: 1999.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

*khkhkhkhkk

Query processing and optimization in distributed database systems

Hasan W. Optimization of SQL Queries
for Parallel Machines.LNCS 1182,
Springer-Verlag, 1996.

Zloof MM. Query-by-Example: A Data
Base Language. IBM Systems Journal
1977;14:324-43.

Bhuyar PR. Horizontal Fragmentation
technique in Distributed database.
International Journal of Scientific and
Research Publications 2012;2(5):1-7.

Abadi D, Carney D, Cetintemel U,
Cherniack M, Convey C, Lee S,
Stonebraker M, Tatbul N, Zdonik S.
Aurora: A new model and architecture for
data stream management. The International
Journal on Very Large Data Bases
2003;12:120-309.

Chaudhuri S, Shim K. Optimization of
Queries with Userdefined Predicates. In
Proc. of VLDB. Mumbai. 1996.

Cheng CH, Lee WK, Wong KF. A genetic
algorithm-based clustering approach for
database partitioning. IEEE Transactions
on Systems, Man, and Cybernetics
2002;32:215-30.

Abuelyaman ES. An optimized scheme for
vertical partitioning of a distributed
database. International Journal of
Computer Science and Network Security
2008;8:310-16.

Tambulea L, Horvat-Petrescu M.
Redistributing Fragments into a
Distributed Database. International Journal
of Computers Communications and
Control 2008;3(4):384-94.

Ganski RA, Long HKT. Optimization of
Nested SQL Queries Revisited. In Proc. of
ACM SIGMOD. San Francisco, USA:
1987.

©2018 The Authors. Published by G. J. Publications under the CC BY license. 87

