
International Journal of Modern Computation, Information and Communication Technology,

2018;1(4):83-87.

ISSN: 2581-5954

 http://ijmcict.gjpublications.com

Research Article

Received: 05.09.2018; Received after Revision: 20.09.2018; Accepted: 21.09.2018; Published: 27.09.2018
©2018 The Authors. Published by G. J. Publications under the CC BY license. 83

Query Execution and Optimization in Distributed Database Environment

Muhammad Haroon*

Department of Computing and Information Technology, University of Gujrat Lahore Sub Campus,

Lahore, Pakistan.

*Corresponding author’s e-mail: haroon.capricorn@gmail.com

Abstract

Query optimization refers to the execution of a query in earliest possible time by consuming a

reasonable disk space. A query execution plan is generated before execution and the optimal operator

tree is got in the search space. Research with different examples is conducted in the present work by

providing up to date information and example work.

Keywords: Query optimization; Query processing; Query execution; Distributed Database.

Introduction

 The global success of databases

especially at commercial level is very much

dependent on the query optimization. SQL

queries run on a specified time but as we know,

as Joins are very useful in SQL queries on one

hand, they are much expensive on the other hand

[1]. A join and non-join query imparts a

handsome difference in terms of time cost. The

query that works according to our requirement is

not always useful for us i.e. if data is updating on

non-bearable time. We need to optimize query

for better performance. This is actually called

Query Optimization [2]. It becomes more

challenging if this is need to be done in

distributed database systems where there are

many replications and fragments spread over

different servers and platforms.

Query processing

 Query processing involves the

conversation and translation of high level SQL

query into some low level instructions that

database engine can read and execute the query

[3]. As shown in Fig. 1, the inputted SQL query

is first parsed by Query Parser and then

translated by Query Translator. It is optimized

then and move towards Execution Engine where

required result is achieved. In distributed

database system environment, the query is

broken down in different steps and then

forwarded towards the fragments for execution.

SQL QueryQuery Parser

Distributed Query
Optimizer

Query Translator

Execution Plan
Generator

Evaluate Engine

RESULT

INPUT

Fig. 1. Query processing

Query optimization

 Executing a query by controlling and

limiting space and time refers to Query

Optimization. Every query gives same result but

the query with best time and space average is

what we need to have and use professionally.

Referring to Fig. 1, the step ‘Distributed Query

Optimizer’ is the step where optimization of

query is performed. The Query Execution Plan

(QEP) is generated which is the plan to optimize

query by considering all parameters [3].

Query optimization description

 In relational databases, first task is to

analyse the SQL query for its possible

http://ijmcict.gjpublications.com/
mailto:haroon.capricorn@gmail.com

Muhammad Haroon, 2018. Query processing and optimization in distributed database systems

©2018 The Authors. Published by G. J. Publications under the CC BY license. 84

optimization. There are some cases where query

optimization becomes NP-Hard problem i.e.

where number of relations in query is not fixed.

The second task is to determine the access

strategy i.e. sequential scan or index.

Sample join query is:

SELECT admin.*

FROM employee e, admin a, student s, teacher t

WHERE e.id = a.id AND a.id = s.id AND s.id =

t.id

 The execution plan for this query will be:

To execute join based query, related tables must

be located on same server or at least related

fragments on same server [4]. With these, one

must specify access strategy with redistribution

prior to the join.

The module that does query optimization is

called Query Optimizer.

Components of query optimizer

Query Optimizer obtains query from query

translator after parsing from query parser and

works on three components:

i. Search Space

ii. Search Strategy

iii. Cost Model

Search Space

 Search Space refers to all feasible sets of

operator tree for a join or cartesian product query

(Fig. 2). Permutations of the join order in a query

imparts a meaningful effect on the execution

plan of the query. In comparison of Fig. 3 and

Fig. 4, the query gives same result but there is a

difference in join permutation that leads to a cost

difference between the two. Search space is

actually to having all the possible and feasible

permutation of operator tree of SQL query [5].

The same case occurs with the cartesian product

based queries. Similarly with the joins, the

cartesian product is also a costly functionality to

use and there need to be very careful to use this.

Cartesian product also generates very much

permutations and acquire a large search space

which requires very carefulness dealing with

this.

Limitations of search space

 Number of alternative operator trees for a

query by applying commutative and associative

rules is (!)O N which becomes un-economical in

case of a complex SQL queries including many

numbers of relations and operators (joins or

cartesian products) because factorial elevates

exponentially [3].

Result

j1

X student

employee admin

Fig. 2. Operator tree for Cartesian Product Query

Result

j3

j2 teacher

j1 student

employee admin

Fig. 3. Operator tree for Join Query (A)

Result

j3

j2

teacher

j1

studentemployee admin

Fig. 4. Operator tree for Join Query (B)

 The other limitation or restriction is to

apply needless heuristics that generates the

useless operator trees in search space which is

not recommended at all. For example, the

possible operator trees are having joins and

cartesian operator trees whereas there may be a

case where cartesian product trees are not

required.

Muhammad Haroon, 2018. Query processing and optimization in distributed database systems

©2018 The Authors. Published by G. J. Publications under the CC BY license. 85

 Orientation of the operator trees is also a

limitation. An SQL query produces two operator

trees Fig. 3 and Fig. 4. The both trees have

different orientations in which one is more

economical than other. In this way, there is a

restriction over orientation of operator trees. In

distributed environment, the tree in Fig. 4 looks

more economical due to its parallelism in joins.

Search strategy

 Query optimizer uses search strategy to

produce the best operator tree by applying the

approach of dynamic programming. As the

dynamic programming is a deterministic

approach, so the technique is to produce operator

tree step by step. Dynamic Programming uses

breadth first search (BFS) to calculate the best

one and discard the rest to avoid the wastage of

search space [6]. On contrary, the Greedy Search

approach produces only one plan which is the

best by not doing exhaustive search. It uses

depth first search (DFS).

 Fig. 5 shows the query optimizer actions

in deterministic strategy done by dynamic

programming of the same query we’ve discussed

before. It progresses step by step by executing

one join, then second and so on. But this

approach becomes expensive in case of too many

relations and operators.

Cost model

 The model that describes the cost of the

query execution in the system. It is the estimated

cost of a complete plan for the operator trees in

the search space.

Cost model in DBMS

 Cost model in Database Management

System (DBMS) depend upon various factors

that includes: Access Type, Selection of optimal

operator tree, CPU and I/O cost etc. The access

type refers to the method of accessing data from

database i.e. sequential scan or index based [7].

Of course the sequential scan requires more cost

than index scan because in sequential scan, there

need to be full scan of the relations by looking

up tuples one by one that requires more time and

space cost. On the other hand, the index based

scan does not require that much time and cost

space.

 The selection of optimal operator tree is

also very important in determining the cost. As

we discussed, the operator tree can be generated

by different means and all the operator trees give

the same result but it makes a lot of difference in

their cost calculation. This is why, the selection

of operator tree means a lot in calculating the

cost.

j1

employee admin

j2

j1 student

employee admin

Result

j3

j2 teacher

j1 student

employee admin

Fig. 5. Query Optimizer Actions in Deterministic

Strategy

 The peripherals cost like CPU and I/O

cost also matters because these parameters are

directly proportional to the execution time of the

system.

Cos Cos / CosTotal t CPU t I O t 
Whereas:

Cos CosCPU t Unit Instruction t Number of Instructions 

The total cost is accumulation of CPU Cost and

the Input Output Cost and the CPU works on the

unit instruction cost by the number of

instructions.

Muhammad Haroon, 2018. Query processing and optimization in distributed database systems

©2018 The Authors. Published by G. J. Publications under the CC BY license. 86

Cost Model in Distributed DBMS

 Execution of query in distributed

database management systems is different from

centralized database management system [8]. In

distributed environment, an SQL query is sent to

different fragments and replicated segments for

execution. There are two types of time

consumptions in distributed environment i.e.

Total Time and Response Time. Total Time is

the sum of all time consumptions while

executing the query by ignoring the concurrency

factor. Whereas the Response Time is the time

that a user has to wait for the result of a query by

considering concurrency factor [9] Concurrency

is one of the most important factors while

dealing with database.

 A query is executed in various phases.

The operator trees in search space is split into

various phases. Let there is an operator tree T.

()P T is the set of phases of operator tree T.

()P T  is one individual phase of operator tree

T.

()  is the set of operations i.e. joins or

cartesian products of a phase  .

The total time is the time of all the operations

while executing the query. In distributed

environment, it is stated as:

Cos Cos / Cos

Cos

Cos Cos

Cos Cos

Cos

Total t CPU t I O t

Communication t

CPU t Unit Instruction t

Number of Instructions

Communication t Query Initialization t

Transmission t

 











Total cost is very much like the cost of

centralized DBMS but there is an extra

parameter i.e. communication cost which is the

cost of the distributed communication of sending

and receiving time from multiple fragments

resided on multiple servers or platforms and that

communication cost is defines as the sum of

query initialization and the transmission cost.

There are some pipelined operations as well in a

phase. These are such operations that are in

waiting queue and pipelines to be executed in

response of some query result. The pipelined

operations play vital role while calculating the

response time of a query execution.
()

1

Re () ()
i

sponseTime ExecutionTime i PipelineWait i
 



 

The response time is the summation of

the execution time (time to execute a query) and

pipeline wait (time to deliver a phase) of all

operations in a query (i=1 to () ).

 The Execution Time is the time that is

combination of the time to execute an operation i

and the transmission time of getting some result

and forward to some other process [10]. It also

depends upon the selected algorithm. For

example, in Fig. 3, the first join operation is

performed and rest are pipelined. Then the result

of first join operation is executed with the other

join and so on. The transmission time is actually

the management of this trading. In distributed

environment, it is the major challenge to

minimize this transmission time. With the

reference to Fig. 1, the execution time can be

defined as:

  

() ()

max cos (1,) , (1)loop

ExecutionTime i TransmitTime i

t join j student TransmitTime j





This is an example formula for above mentioned

query and operator tree in Fig. 3.

 In distributed DBMS, different fragments

and the replicated pieces of database are spread

over multiple sites and multiple servers so the

query execution needs to go to every fragment to

check predicates and to get relevant data and of

course there are some communication links in

between these sites and servers which result in

communication and transmission cost [5]. For

example, there is a database spread over four

sites and there are some communication links in

between the sites as shown is Fig. 6.

Site 1 Site 2

Site 3 Site 4

w

x
y

z

Fig. 6. Distributed Database Fragments Structure

over four sites

 There are four sites site 1, site 2, site 3

and site 4 with communication links w, x, y and

z. The total time of a query execution over this

structure will be:

Muhammad Haroon, 2018. Query processing and optimization in distributed database systems

©2018 The Authors. Published by G. J. Publications under the CC BY license. 87

4

()

TotalTime Query InitializationTime

UnitTransmissionTime w x y z

 

    

And the response time will be:

Re

1 2,

2 4,
max

1 4,

3 4

sponseTime

time to send w from site to site

time to send x from site to site

time to send y from site to site

time to send z from site to site



 
 
 
 
 
 

1 2time to send w from site to site

Query InitializationTime unit transmission w



 

2 4time to send x from site to site

Query InitializationTime unit transmission x



 

1 4time to send y from site to site

Query InitializationTime unit transmission y



 

3 4time to send z from site to site

Query InitializationTime unit transmission z



 

This is how one can calculate the costs in

distributed environment.

Conclusions

Query optimization is always been under

discussion and research for years. This is one of

the important and challenging tasks in database

systems area. In addition to distributed

environment, it becomes more interesting and

difficult too. Query processing is also somehow

complex with distributed DBMS and hence

query optimization too. The understanding of

distributed system is required to tackle this issue

and write about it. Minimize the cost factor is

actual challenge to deal with.

Conflicts of interest

Authors declare no conflict of interest.

References

[1] Ozsu MT. Valduriez, P. Principles of

Distributed Database Systems. Prentice-

Hall, Inc., NJ, USA: 1999.

[2] Hasan W. Optimization of SQL Queries

for Parallel Machines.LNCS 1182,

Springer-Verlag, 1996.

[3] Zloof MM. Query-by-Example: A Data

Base Language. IBM Systems Journal

1977;14:324-43.

[4] Bhuyar PR. Horizontal Fragmentation

technique in Distributed database.

International Journal of Scientific and

Research Publications 2012;2(5):1-7.

[5] Abadi D, Carney D, Cetintemel U,

Cherniack M, Convey C, Lee S,

Stonebraker M, Tatbul N, Zdonik S.

Aurora: A new model and architecture for

data stream management. The International

Journal on Very Large Data Bases

2003;12:120-39.

[6] Chaudhuri S, Shim K. Optimization of

Queries with Userdefined Predicates. In

Proc. of VLDB. Mumbai. 1996.

[7] Cheng CH, Lee WK, Wong KF. A genetic

algorithm-based clustering approach for

database partitioning. IEEE Transactions

on Systems, Man, and Cybernetics

2002;32:215-30.

[8] Abuelyaman ES. An optimized scheme for

vertical partitioning of a distributed

database. International Journal of

Computer Science and Network Security

2008;8:310-16.

[9] Țâmbulea L, Horvat-Petrescu M.

Redistributing Fragments into a

Distributed Database. International Journal

of Computers Communications and

Control 2008;3(4):384-94.

[10] Ganski RA, Long HKT. Optimization of

Nested SQL Queries Revisited. In Proc. of

ACM SIGMOD. San Francisco, USA:

1987.
