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Abstract

Certain properties of operator algebras have been studied such as boundedness, positivity, surjectivity,
linearity, invertibility, numerical range, numerical radius and idempotent property. Of great interest is
the study of spectrum of linear mappings. It is therefore necessary to characterize Jordan
homomorphisms on semisimple Banach algebras in terms of their spectrum. The objectives of the study
are to: Investigate whether Jordan homomorphisms on semisimple Banach algebras are spectral
isometries; Investigate whether Jordan homomorphisms are unital surjections on semisimple Banach
algebras and to establish the relationship between unital surjections and spectral isometries on
semsimple Banach algebras. For us to achieve our objectives we used Kadison's theorem, Gelfand
theory and Nagasawa's theorem. The results obtained show that Jordan homomorphism is spectral
isometry if it preserves nilpotency also is unital surjection if it preserves Jordan zero products and
finally is unital surjective spectral isometry if it preserves commutativity and numerical radius between
semisimple Banach algebras. These results are useful in characterizations in quantum mechanics and
operator algebras.
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radius and generalized distance measures. They
presented several results which showed that
those transformations were closely related to the
Jordan*-isomorphisms between the underlying

Introduction

Linear preserver problems have a
relatively long history and different kinds [1] and

[2]. Some of the most popular linear preserver
problems are linear maps preserving problems
related to invertibility or spectrum [3]. In [4]
they dealt with the problem of characterizing
linear maps compressing the numerical range. A
counter example was given to show that such a
map need not be a Jordan*-homomorphism in
general even if the C*-algebras were
commutative. Under an auxiliary condition they
showed that such a map was a Jordan *-
homomorphism. In [5] studied non-linear
transformations between the unitary groups of
Von Neumann algebras and the twisted
subgroups of positive invertible elements in
unital C*-algebras with various preserver
properties concerning the spectrum, spectral

full algebras. In [6] the author investigated to
what extent a unital spectrally bounded operator
from a simple unital C*-algebra of real rank zero
onto a unital semisimple Banach algebra was a
Jordan epimorphism.

In [7] the author established that all
derivations on a semisimple Jordan-Banach
algebra were automatically continous. Also it is
shown that "almost all" primitive ideals in the
algebra were invariant under a given derivation,
the general case was reduced to that of primitive
Jordan-Banach algebras. In [8] it is proved that
every unital, surjective, invertibility preserving
map from Von Neumann algebra onto standard
operator algebra was a Jordan homomorphism.
In [9] it is shown that a continuous derivation on
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Banach algebra over the real or complex field
leaves the primitive ideals of the algebra
invariant. Also showed that every (linear)
derivation on a semisimple Banach algebra was
continuous. Thus every derivation on a
semisimple Banach algebra, leaves the primitive
ideals of the algebra invariant.

The author in [10] was concerned with
certain automatic continuity problems for
homomorphisms and derivations on Banach
algebras. Cusack showed that if there existed a
discontinous homomorphism from Banach
algebra or a discontinuous derivation on a semi
prime Banach algebra, then there existed a
topologically simple radical Banach algebra.
Furthermore Cusack showed that there were no
Jordan derivations which were not also
associative derivations on any semi-prime
algebra over a field not of characteristic 2.
Moreover it followed that every Jordan
derivation on semisimple Banach algebras was a
derivation and therefore continuous. In [11] they
showed that every surjective n-homomorphism
(n-anti-homomaorphism) from Banach algebra A
into a semisimple Banach algebra B was
continuous.

Research Methodology

Definition 2.1 [1, Definition 3.1.2]. The function
is surjective (onto) if every element of the
codomain is mapped by at least one element of
the domain (That is the image and the codomain
of the function are equal).

Definition 2.2 [8, Definition 2.8.5]. Let A be a
complex Banach algebra,we say that A is
semisimple if rad (A) = 0.

Theorem 2.3 [7, Theorem 3.3.2]. Nagasawa's
theorem which asserts that since T is a bijective
spectral isometry, we have that the image under
T of the Jacobson radical of A is exactly the
Jacobson radical of B.

Theorem 2.4 [10, Proposition 3.2]. (Kadison's
Theorem) Let A and B be unital semisimple
Banach algebras. Let T:A— B be a surjective
spectral isometry. Then T belongs to the centre B
and its spectrum lies in the unit circle in C.

Theorem 2.5 [5, Theorem 2.1.10]. (Gelfand
Theorem) If both A and B are commutative
unital C*-algebras and T is a unital surjective
numerical radius preserving linear map from A
to B then r(a)=||a|| and r(T(a))=||¢ (3)||-

Spectral characterization of Jordan Homomorphisms on semisimple Banach algebras

Theorem 2.6 [11, Theorem 3.5] When T:A—B
is a surjective linear isometry between two unital
C*-algebras A and B, then T; is a unitary in B
and the mapping xa (T.)™ Tx,x in A is a Jordan
*-isomorphism (that is, it preserves additionally
self-adjoint elements).

Theorem 2.7 [4, Theorem 3.1]. Let T:A—B be a
spectral  isometry  between the unital
commutative semisimple Banach algebras A and
B. We define :Tp — Tg by = TgoToTa™
Then T is a spectral isometry which is unital or
surjective, when T has these properties.
Moreover, since spectral radius and norm

coincide for continous functions F isometry.

Definition 2.8 [9, Definition 2.6]. Automorphism
is an isomorphism from a mathematical object to
itself. It is in some sense a symmetry of the
object and a way of mapping the object to itself
while preserving all of its structure.

Definition 2.9 [6, Definition 3.2]. Isometry is a
distance preserving transformation between
metric spaces, usually assumed to be bijective. A
composition of two opposite isometries ia a
direct isometry. A reflection in a line is an
opposite isometry.

Definition 2.10 [10, Definition 1.4]. If A and B
are algebras then we will call a linear map
T:A— B called a Jordan Homomorphism if
T(xy + yx) = T(X)T(y) + T(y) T(x) for every x,y
in A

Definition 1.6 [1, Definition 2.2.3]. Morphism
refers to a structure preserving map from one
mathematical structure to another.

Results and discussions

Proposition 3.1: Let A,B be semisimple Banach
algebras. Let ¢ :A — B be a spectral isometry.
Then ¢ is a Jordan homomorphism if it has the
property that ¢p2: ¢ p for every projection p in
A

Proof. We have to show that ¢a’=g¢a’ for every

ain A. Let p and q be orthogonal projections in
A. Then p+q is a projection,therefore by

assumption $p +pa=¢
p+4a*=(¢p+4p)(4A)+(PA)($P)*+40) it
follows that ¢p)(#Q)+4Qq)(sp)=0 and

hence,(¢ p)(4 a)=-(¢ p)(¢ a)(¢ P)=(4 A)(¢ P)
since ¢ p is idempotent. As a result, ¢p and ¢q

are orthogonal idempotents.
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n

Let a=z djpj be a linear combination of
j=1
mutually orthogonal projections ps,.....,pn In A.

Then ¢ (&)= (30%i)= 3.0 pi=(4a) for
j=1 j=1

@ PLyeeeer @ Pr are mutually orthogonal

idempotents. By spectral theorem every self-
adjoint element a in As, is the norm-limit of
finite linear combinations of mutually orthogonal
projections. Hence, the continuity of ¢ entails

that ¢ (a%)=(¢a)? for every a in A, Replacing a
by atb in this identity yields
¢ (abtba)=(ga)(pb)+(gb)(ga) for all ab in
Agsay. Suppose a=aj+ia; with a in Ag is the
cartesian decomposition of a in A.
By the above,
a22+i(a1a2+a2a1)):( ¢ 3.1)2-
(pa)*+i((pa)(ga)+(ga)(¢ a))=(¢a)>. This
proves the result.

Theorem 3.2. Let ¢:A—B be a Jordan
homomorphism then ¢ is a spectral isometry if
it preserves nilpotency.

¢ (3%)=¢ (a*-

Proof. By composing ¢ with the canonical
epimorphism B—B/rad B since B is
semisimple. As a result ¢ is bounded and hence
open. Let N>0 be such that, for each y € B,
there is x in A with the properties ¢x=y and
IIX|I< N |ly || Let m> 0 be such that r(¢x) <
mr(x) for all x in A.

If there exists ¢> 0 such that r(a+x)<c|| x |[*" for
all x in Awith || x || < 1. Take y in B with || y|| <

% and choose x in A such that ¢x=y and || x

lI< NIy [l.
We have

(4 a+y)=r( ¢ (a+x))<mr(a+x)<mc[jx|[""< mcN*|
y |[M"}. Thus for some bounded neighbourhood
of zero u in A, there is a constant cu> 0 such that
r(a+x)<cul| x |[*" for all x in u then (¢ a)"=0.

Theorem 3.3. Every spectral isometry is a Jordan
homomorphism if it preserves elements with
square zero. If e,f are orthogonal idempotents in
Ajthen (g a)(gb)+(pb)(¢4a)=0 for all a in eAe,b
in fAf which can be written as finite sums of
elements with square zero.

Proof. Let a in eAeb in fAf be written as
a=» ai,b=) bi respectively, where ai in eAe

Spectral characterization of Jordan Homomorphisms on semisimple Banach algebras

and bj in fAf are elements with square zero for
all i,j. Then (ai+bj)®>=0 for all i,j therefore, by
assumption, (¢ (ai+bj)>=0  which yields
(gai)(gbj)+(pbj)(gai)=0 for all i,j. Summing
over all i,j we find (¢ a)(¢ b)+(¢ b)(¢a)=0.

Corollary 3.4. Let A,B be semisimple Banach
algebras and ¢:A—B be a spectral isometry

which is a Jordan homomorphism. If it preserves
elements with square zero, then ¢  maps

projections in A onto idempotents in B.

Proof. Let p in A be a projection. Suppose at
first that both p and 1-p are properly infinite.
Then (¢4 p)(1- 4 p)(¢p)=0 which is equivalent to
(#p)*=¢p. Suppose that p is properly infinite
but 1-p is not. Then there is a sub projection f of
p such that p : f: p-f, where : denotes
equivalence, so that both f and p-f are properly
infinite. It follows that 1-f and 1-p+f=1-(p-f) are
properly infinite. For example, let z in A be a
central projection with z(1-f)< 0. Writing z(1-
f)=z(1-p)+z(1-f), we see that z(1-f) is infinite
whenever z(p-f)<0 as 1-p and p-f are orthogonal.
If z(p-f)=0 then zp=0 since p-f: p. Therefore,
z(1-f)=z is infinite in this case too. Hence, 1-f is
properly infinite and similarly for 1-(p-f). By
step 1 we have (¢f)’=¢f and (4 (p-f))*=¢ (p-f)
with e=p-f, we also have ¢ (p-f)(4F)+(4 1) (p-

f)=0.
Consequently, (gp)°= (4 (-N+4H> =(¢(p-
0°+g (p-N(g N+ D P-N+gH° = ¢(p-
f+gf=gp.

Suppose now that p is not properly infinite but
finite. Let z in A be the unique (minimal)
projection in A such that zp is properly infinite
and (1-z)p is finite, ¢ (zp) is idempotent. Since z
and 1-z are properly, then we can apply za and
(I-z2)b and obtain ¢ (za)¢ ((1-z)b)+ ¢ ((1-
z2)b) g (za)=0a,bin A.

Rearranging we get

Set b=1 since ¢ is unital, it follows that 2 ¢ (za)
= ¢(za)g(2)+¢(2)¢(za) and multiplying this
identity on the left by the idempotent ¢ (z) as
well as on the right and then subtracting the
resulting identities, we
have ¢ (z) ¢ (za)=¢ (za) ¢ (2)=¢ (za), a in A. Set
a=lin (1) Then using the identity just obtained
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p(@)p)¢(x) =
=2¢(zb) forallbin A
As above, this entails that ¢ (z) ¢ (b) = ¢ (b) ¢ (2)
= ¢ (zb), b in A. In particular,

d ()4 (zp) = p(P)¢ @) ¢ (P) =9 (P)¢(2)° ¢ (p)=
$(0) 4 (2)4(P) ¢ (2) = ¢ (zp) ¢ (zp) = ¢ (zp)

and similarly ¢ (zp) ¢ (p)=¢ (zp).
From this, we deduce that

(¢ (1-2)(1-p)))* = (1- 4 (2)-( 4 (P)- 4 (zP)))’

= (1-¢ (2))°+(¢ (p)- ¢ (zp))*-2(1-
¢ (2))(4 (p)- 4 (zp))

=1- ¢ (2)+ ¢ (p)*+ ¢ (zp)*-

¢(2) ¢ (zb)*+ 4 (zb) ¢ (2)

24 (p) 4 (zp)

=-2(¢(p)-¢(2) ¢ (p)-
¢ (zp)+ ¢ (2) 4 (zp))

=1-¢ (2)+¢ (P)*+¢ (2p)-2¢ (P)

=(1-¢ @)-¢ (P)+¢ (2P)+(# P)*-
¢p)
This gives (4 ((L-2)(L-p)*4(L-2)(1-p) =
(4p)*-¢p.
Therefore ¢ p is idempotent if and only if ¢q is
idempotent, where q is the projection g=(1-z)(1-
p). Let z' be a central projection in A. If z'(1-2)=0
then z'g=0 as q<1-z. If z'g<0 is finite, then z'(1-
z)p must be infinite as z'q+z'(1-z)p=z'(1-z) which
is either infinite or zero and the sum of two
orthogonal finite projections is finite since z'(1-
z)p is subprojection of the finite projection (1-
z)p it follows that z'q is either zero or infinite. By
means of this, q is properly infinite whence ¢q

is an idempotent by the second part of the proof.
Therefore, ¢ p is an idempotent.

Finally, suppose that p is finite. Then, 1-p is
infinite wherefore ¢ (1-p)=1-¢p is idempotent,
which completes the proof.

Lemma 3.5. Let A and B be semisimple Banach
algebras. Assume that ¢ :A—B is a unital
surjective map which preserves invertibility.
Then T is a Jordan homomorphism.

Proof. Let p1,p2 in A be orthogonal Hermitian
idempotent since pi+p; is a projection, we have
(¢ (P)*+¢ ()" = $(P)+4(p)  This yields
¢ (p) ¢ (P2)+ ¢ (P2) ¢ (p1)= 0. It follows that if H

in A is of the form H= thpj where t in R and
j=1

pj are Hermitian idempotents such that pipj=0 if
i<j, then ¢ (H)= ¢ (H)%.The set of all Hermitian

Spectral characterization of Jordan Homomorphisms on semisimple Banach algebras

elements that can be represented as finite real
linear combination of mutually orthogonal
projections is dense in the set of all Hermitian
elements in A. Therefore we have
¢ (H)=(¢ (H))? for every Hermitian element H

in A. Now replace H by H+K where H and K are
both Hermitian, we get (HK + KH)= ¢ (H)¢
(K)+ ¢ (K) ¢ (H) since an arbitrary A in A can be
written in the form A= H +iK with H,K
Hermitian, which imply that ¢ (A%)= (4 A)*

Theorem 3.6. Let A and B be semisimple Banach
algebras. Let ¢ :A—B be a unital surjective

bounded linear map preserving Jordan zero
products. Then ¢ is a Jordan homomorphism J

from A onto B such that ¢ (A)=¢(1)J(A) if
¢ (1) is an invertible central element of B.

Proof. Let ¢ :A—B be a bounded linear map
such that (TS)¢ (T)+¢ (T)¢(S)=0 for ST in A
with ST+TS=0. Then for any S in A we
haveg (1)4(S)* = ¢(S)°6(D), ¢(1)4(S)°+
¢ (S)?¢ (1) = 24 (S)% Replacing S by S+T with
S,Tin A we have
¢(DgS)o(T) +¢ (Me(S) =
¢(S)p(M+4(M)¢(S)4 (1)
¢

(1) ¢ (ST+TS)+¢ (ST+TS) ¢ (1)=2(¢ (S) ¢ (T)+¢ (
T)¢(S))
For each A in A, write A=S+iT with S, T in A.
Applying above equations and the linearity of ¢,
we getg (1) g (A= ¢ (A g (1)............ Q)
and

$(1) ¢ (AY+$ (AP (1) =24 (A)......3)
hold for all A in A. Since every element in a
semisimple Banach algebra in an algebraic sum
of square elements and ¢ is surjective, from (ii)

we know that ¢ (1) is the center of B. Hence it
follows from (2) that ¢(1)B=B. In particular,
¢ (1)E=¢ (1) for some E in B. So,¢(A)E
=9 (AY) ¢ (DE=¢ (A")¢(1)=¢(A)* for all A in
A. Thus BE=B for all B in B. Similarly, EB=B

for all B in B. This implies that B is unital with
unit E and it follows from ¢ (1)B=B that ¢ (1) is
invertible. Let J(A)=¢ (1)™¢ (A) for all A in A,
then it is easy to verify that J is surjective Jordan
homomorphism from A onto B.

Theorem 3.7. Let H and K be Banach algebras
and A, B be semisimple Banach algebras on H

©2018 The Authors. Published by G. J. Publications under the CC BY license. 64
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and K respectively. Let ¢ :A—B be a unital
surjection then ¢ is a Jordan homomorphism if

there exists a non-zero scalar ¢ and an invertible
bounded linear or conjugate linear operator
U:H—K such that either ¢ (A)=cUAU™ for all

AinHor ¢ (A)=cUA* U" forall Ain H.
Proof. ¢ is injective.

Step 1:¢  preserves idempotents and
rank-one idempotents in both directions. If p in
A is an idempotent, then p(1-p)+(1-p)p=0. This
implies ¢ (p)(1-¢ (p))+(1-4 (p)) ¢ (P)=0, that is

$(P)=¢()>. Consequently, ¢(p) is an
idempotent. Suppose that p is rank-one while
¢ (p) is not rank one. Then ¢ (p) can be written

as a sum of an idempotent and a rank-one
idempotent in B. Since ¢-! satisfies the same
property as ¢. Rank-one idempotent p can also

be written as a sum of two non-zero idempotents.
This is a contradiction.

Step 2: ¢ preserves rank-one operators in
both directions. In particular,¢ preserves rank-
one nilpotent in both directions. Let p be an
idempotent of rank-one, then for every non-zero
A in C, we have 1 p)(1-p)+(1-p)(A p)=0 which
implies that 2¢4 (Ap)=¢ (4 p)¢ (P)+¢ (P) ¢ (¢ P).
Since ¢ (p) is a rank-one idempotent, we obtain
¢(Ap)¢(P)=¢(P)¢(AP)¢(P)=¢(P)¢ (A p). It
follows that ¢ (Ap)= ¢(p) is of rank-one.
Especially, there exists fp(4) in C such that
¢ (Ap)=Tp(1) ¢ (p). If A=x®T is a nilpotent of
rank-one, then there exists f; in H' such that
fi(x)=1. Let f,=f;-f. Then pi=x®f; (i=1,2) are
rank-one idempotents and A=p;-p,=X® f;-X ® f,.

Suppose that ¢ (pi)=yi®gi by step 1, gi(yi)=1.
Notice that p:%(pﬁpz) is a rank-one

idempotent o ¢(p):%(y1®gl)+(yz®gz) is a

rank-one idempotent. Then either yiy, are
linearly dependent or ¢;,0> are linearly
dependent. Assume yi=Yy,=Y, then ¢ (A)=y® g;-
y® g which is a nilpotent of rank-one.

Step 3: Either

(i)  there exists a bijective bounded linear or
conjugate linear U:H—K such that
¢ (A)=UAU" for every finite rank

operator A in H or

Spectral characterization of Jordan Homomorphisms on semisimple Banach algebras

(i)  There exists a bijective bounded linear or
conjugate linear operator U:H'—» K
such that ¢ (A)=UA'U™ for every finite
rank operator A in H. In this case H and
K are reflexive.

Since ¢ is additive and preserves rank-one

operators, rank-one idempotent and rank-one
nilpotent in both directions.

Step 4: for every operator A in A a rank-
one idempotent R in H, ¢(RAR)=¢(R)¢
(A)¢(R). By Step 3, for every finite rank
operator Ag in H, we have ¢ (RA oR)=¢(R)¢
(Aog (R)). We have to prove that above equation
holds for every A'in A. Let R=Z®h and p in H
with p=x®f a rank-one idempotent, where x,Z
in H and f,h in H'. Then there exist nilpotents
s=x®y and T=y®f of rank one with y in H, g in
H' such that p=sT. Furthermore, Q-Ts=y®g is
an idempotent of rank-one disjoint with p, and R
is a linear combination of p,Q,S and T. For every
A in A, let B=(1-p-Q)A(1-p-Q), then we have
pB=QB=sB=TB=0 and Bp=BQ=BS=BT=0.
Consequently, RB=BR=0. By the property of ¢,
we get ¢ (R)¢ (B)+¢(B) ¢ (R)=0. Since ¢(R) is
an idempotent, a simple computation shows that
¢ (R) ¢ (B) ¢ (R)=0. Using the fact that A-B is of
finite rank, we get ¢ (RAR)=¢ (R(A-
B)R)=¢ (R)¢ (A-B)¢ (R)=¢ (R) ¢ (A) ¢ (R).

Step 5: Either ¢ (A)=UAU™ for every A
in A or ¢ (A)=UA'U™ for every Ain A,

Suppose that for the operator of finite rank the
case (i) of step 3 holds. Let A in A, for any z in
H and y in H' and y(z)=1, R=z®y in H is an
idempotent of rank-one and by step 4, we have
t(y(Az)URU =t(y(U™ ¢ (A)Uz))URU™ where t is
an identity or the conjugation of C. This yields
Y(AZ)=y(U™ ¢ (A)UZ) .............. (4)

Fix z for a moment. Then (iv) holds for every y
in H' with y(z)=1 and so, for every y in H' by
linearity. Thus Az=U™ ¢ (A)Uz is valid for every
z in H and the case (1) of the theorem is proved.
Now we assume that case (ii) of step 3 holds for
every operator of finite rank. Then for every z in
H and y in H' with y(z)=1 by step 4 we get
ty(Az)U(x®y)'U™=t(h(U" ¢ (A)U)z))  and
therefore y(Az)=y((U™ ¢ (A)U)'z). Using similar
arguments, as above, we obtain A=(U
14 (A)JU). Consequently, the case (2) of the
theorem holds true.
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Theorem 3.8. Let H and K be Banach algebras
and A and B be semisimple Banach algebras on
H and K respectively. Let ¢ :A— B be a unital
surjection then ¢ is a Jordan homomorphism if
either;
(i)  There exists a bijective bounded linear or
conjugate linear operator UH— K
such that ¢ (A)=UAU™ for all Ain A.

(i)  There exists a bijective bounded linear or
conjugate linear operator U:H'—» K
such that ¢ (A)=UA'U™ for all A in A.

In this case H and K are reflective.
Proof. Let p in B(H) with p>=p since p(1-p)+(1-
p)p=0, we have ¢ (p)¢(1-p)+¢(1-p)¢ (p)=0

and consequently ¢
D¢ P)+4P)¢(1)=2¢(p)2. Thus we have
¢ ()’ ¢ (1)+4 (P) ¢ (1) ¢ (P)=2 (p)’ and

$(DPO*+4(P)¢ (14 (P)=2¢()°.  These
together imply that ¢ (1) 4 (p)*=4 ()’ ¢ (1).
Similarly, it follows from
s (P)+¢ (1) (P)4(D=2¢ (1) ¢(P)*  and
s (L)*+9(1)g(P)4(1)=24(p)¢(1)  that
is¢ (D) ¢ (1)°=4 (1) 4 (p).

Since every infinite-dimensional Banach
algebras has infinite multiplicity then every
bounded linear operator on an infinite-
dimensional Banach algebra is an algebraic sum

of finite many idempotents. Hence we
have ¢ (A)¢°= ¢ (1)*¢ (A)holds for every A in
H. Therefore, by surjectivity of ¢ (1) {2} = 11
for some scalar 1. Let T,S in H with ST=0 for
any idempotent p, it follows from Tp(1-p)S+(1-
p)STP=0 and that d(TP)P (S)+¢ (S) g ((1-
P)S) ¢ (TP)=0.

Thus ¢ (TP) ¢

(S)t¢(S)4 (TP)=¢ (TP) ¢ (PS)+¢ (PS) ¢ TP)...(5)
holds for every idempotent p. On the other hand
T(1-p)pS+pST(1-p)=0 implies that ¢ (T(1-
P) ¢ (PS)+¢ (pS)¢ (T(1-p))=0  and  hence
¢ (T) ¢ (pS) ¢ (T)=¢ (Tp) ¢ (pS)+ ¢ (pS) ¢ (Tp)..(6)
for every idempotent p. Combining (5) and (6)
we get

¢ (Tp) 4 (S)+¢(S) ¢ (Tp)=¢ (T) ¢ (PS)+(PS) ¢ (T).
For every idempotents p. Hence for every Ain H
¢ (TA)O (S)+¢ (TA)=¢(T) 4 (AS)+¢

(AS) P (T) e (7

Spectral characterization of Jordan Homomorphisms on semisimple Banach algebras

Take T=Q and S=1-Q for some Q in H with
Q*=Q. Then ST=O and from (iii) we get
¢ (QA) ¢ (1-Q)+¢ (1-Q) ¢ (QA)=¢ (Q) ¢ (A(L-
Q)+ ¢ (A(1-Q)) ¢ (Q). Thus we see that

¢ (QA) ¢ (1)*+¢ (1) ¢ (QA)-¢ (Q) ¢ (A)-
¢ (A) ¢ (Q)=¢ (QA) ¢ (Q)*+¢ (Q) ¢ (QA)-4(Q) ¢
(AQ)-¢4 (AQ) ¢ (Q)

On the other hand, taking T=1-Q and
S=Q we obtain from (iii) another equation

4 (1) ¢ (AQ)+¢ (AQ) ¢ (1)-4 (A) ¢ (Q)-

¢ (Q) ¢ (A)=¢(Q) ¢ (AQ)+¢ (AQ) ¢ (Q)-

¢ (QA) ¢ (Q)-¢ (Q) 4 (QA).

Hence ¢ (QA+AQ) ¢ (1)+¢ (1) ¢ (QA+AQ)=2(¢ (
Q)¢ (A)+4 (A) ¢ (Q)) holds for every idempotent
Q. This further implies
that ¢ (AB+BA) ¢ (1)+ ¢ (1) ¢ (AB+BA)=2( ¢ (A)
¢ (B)+¢ (B)¢ (A).....(8) holds for every B in H
multiplying (iv) from left and right by ¢ (1)
respectively, we see that ¢ (1)%¢
(AB+BA)t ¢ (1) ¢ (AB+BA) ¢ (1)=2¢ (1)(¢ (A) ¢
B)+4(B)4(A) and  $(1)¢ (AB+BA) ¢
(1)+4 (AB+BA) ¢ (1)°=2(¢ (A) ¢ (B)*+ 4 (B) 4 (A)
¢ (1)). These two equations, together with the
fact  that ¢(1)*>=21,  entail that
¢(D(¢(A) ¢ (B)+4(B)¢ (A)=(¢(A)¢ (B)+¢ (B
)¢ (A) ¢ (D). 9)

Let A=B in (iv) and (V)
theng (1) ¢ (A%)+4 (A%) ¢ (1)=2¢ (A)’.......(10)
and ¢ (1) (A)°=¢ (A ¢ ().ovrrrerrrrrrrnene. (11)

By surjectivity of ¢, equation (7) implies
that ¢(1) commutes with all idempotent

operators and hence there must exist a scalar u
such that ¢ (1)=ul while equation (vi) shows that

u<o. Let c:E and v ()=cy (.), then vy :H—> K
u

is an additive and surjective preserving Jordan
zero products and  (1)=1. Moreover for every
Ain H, y (A%=y (A)* which implies that v is a
Jordan homomorphism. Since K is prime, we can
see that y is either a ring homomorphism or a
ring anti-homomorphism. Therefore y is a
scalar  multiple of a surjective ring
homomorphism or a surjective ring anti-
homomorphism.

We will show that & is injective. Without
loss of generality we assume that 6 is a
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surjective ring homomorphism. We first claim
that the null space of @ is closed. For every 0=y
in K, define kery(¢)={T in H| ¢ (T),=0} which
is a left ideal of H and ker(¢)= 1 ker y(¢). If L
is a left ideal such that kery¢ is a proper subset
L, then ¢ (L)y is a non-zero invariant linear
manifold K. It follows that ¢ (L)y=K. So, there
exists T in L such that ¢ (T)y=y for any s in H
we have s-sT in ker y(¢) L. This implies that s
in L since sT in L. Therefore, we have L=H and
consequently, ¢y(¢) is closed and hence ker(¢)
is closed. Note that the set of ring two-sided
ideals, coincides with the set of algebraic two-
sided ideals in H. Thus if ¢ is not injective, then
the kernel of ¢ is a closed two-sided ideal which
contains the ideal consisting of all compact
operators. Suppose the dimension of H is Ny,
which is an infinite cardinal number N<Ny, let
In={T in H |dim M<N holds for all closed linear
subalgebras M c range (T)}.

Then Iy is a closed two-sided ideal of H
and every closed two-sided ideal of H arises in
this way. In particular, Iny is the largest one.
Therefore,¢ induces a ring isomorphism from

the quotient algebra H/ker ¢ onto K. This

implies that there is an element A in H such that
A+kerg is a single element of H/kerg . An
element T in an semisimple Banach algebra A is
single if, for any S,R in A, STR=0 will imply
ST=0 or TR=0. For an semisimple Banach
algebra A there exists a representation (z,H) of
A such that an element T in A is a single element
if and only if = (T) is of rank one on H, and
consequently, dim TAT=L1. Hence
(A+ker ¢ )H(A+ kerg )=AB(H)A + kerg is of
dimension one modulo ker¢. Let N<Ny be the
infinite cardinal number such that kerg =ly.
Then the range of A contains a close subalgebra
of dimension N. By halving the subalgebra into
two; each of dimension N, we see that AHA
contains two elements linearly independent
modulo Iy a contradiction. So, ¢ is injective.

Hence we have shown that ¢ is a scalar multiple

of a ring isomorphism or a ring anti-
isomorphism from H onto K. Thus ¢ is a unital

surjective Jordan homomorphism.

Theorem 3.9. Let A and B be semisimple Banach
algebras. Let ¢:A—>B be a Jordan
homomorphism. Then ¢ is a unital surjective

Spectral characterization of Jordan Homomorphisms on semisimple Banach algebras

spectral isometry if it preserves commutativity
and numerical radius.

Proof. ¢ is invertible. Suppose a in A and let
A;= (al) be the closed sub-algebra of A
generated by a and 1. Define a linear map ¢ 1:A.
1—> ¢ (A1) by #1(X)=¢ (x) for all x in A;.
Suppose ¢ (A;) is a subalgebra of B since A; is
commutative and ¢ preserves commutativity so
¢ (A1) is commutative. Also ¢, preserves
numerical radius, therefore ¢, is a Jordan
homomorphism, so ¢ (a%)=¢ (a)®. Otherwise let
Bi1=( ¢ (A1)) and define a linear map T1:B;—
T™B; by T(y)=T "(y) for all y in By, suppose ¢-
1(By) is a subalgebra of A, since B; is
commutative, and T is numerical radius
preserving, therefore T is a homomorphism and
hence TOA)=T,0)%, then T,(¢
@)=T,(¢@)’=a" therefore 4 (a)’=¢ (&).
Otherwise, let A,;=( ¢ *(B1)) and define a linear
map ¢2:A2— ¢ (A2) by ¢2(X)=¢ (x) for all x in
A,. By continuing the process we obtain
sequences A, and B, commutative subalgebras
of A and B respectively such that A;=(a,1),
A=( ¢ (Bn1)) Bi= ($(A)) Ac Ac
...cA and B;cB,c..c B. Define A=UA,
and B'=UBpand ¢':A'— B'by ¢'(x)=¢ (x) for
every x in A'. A" and B' are commutative and ¢'
IS a unital surjective spectral isometry, so ¢' is
Jordan homomorphism and hence ¢'(a%)=¢'(a)%,
therefore ¢ (a%)=¢ (a)>.

Theorem 3.10. Let ¢:A—B be a unital

surjective spectral isometry between semisimple
Banach algebras A and B. Then ¢ is Jordan

homomorphism if there is a unitary u in Z(B)
and a unital surjective spectral isometry
¢ 1:A—Bsuchthat g,=ugia, ain A.

Proof. Put u=¢; which is a unitary and set
¢1a=uga, ain A. Since u is central for each a
in A r(gaa)<r(ur(ga)=r(4a)=r(@)=r(uu
Lg)<r(u)r(u™ ¢ )= r(¢1a) hence ¢ is a unital
surjective spectral isometry.

Theorem 3.11. Let A and B be simisimple
Banach algebras. Let ¢:A—B be unital

surjective spectral isometry. Then ¢ is a Jordan
homomorphism if ¢ rad(A)=rad(B).
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Proof. Take a in rad(A) and y in B such that
r(y)=0. Choose x in A with y=¢x then,

r(x)=r(y)=0 it follows that r( ¢ at+y)=r(¢ (a+x))=0
so that ¢a in rad(B). Conversely, take b in
rad(B) and let a in A be such thatb=¢ga. Let x in
A be quasinilpotent. Then r(a+x)=r(¢ (a+x))=
r(b+¢x)=0. Since ¢x is quasinilpotent. It
follows that a in rad(A) therefore b in rad(A).
We conclude that ¢ rad(A)=rad(B).

Remark 3.12. In particular if both A and B are
commutative  unital semisimple  Banach
algebras and ¢ is a unital surjective spectral
isometry from A to B, then by Gelfand theorem
r@=llall and r(¢ (a))=ll¢ (@)l so r(a)=llall=v(a)
and r(¢(a)=|l¢ (@)|=v(¢(a)) for all a in A,

therefore r(@)=r(¢(@)) and we can use
Nagasawa theorem.

Conclusions

Certain properties of operator algebras have been
studied such as boundedness, positivity,
surjectivity, linearity, invertibility, numerical

range, numerical radius and idempotent property.
Jordan homomorphisms have been studied by
several scholars such as Mathieu, Sorour, Semrl,
Braser among others. For instance, Kazempour
showed that a linear map on two Banach
algebras is a Jordan homomorphism and
multiplicative. Furthermore, Martin and Gerhard
showed that Jordan homomorphisms between
Von Neumann algebras are spectrally bounded.
However studies on spectral characterization on
semisimple Banach algebras have been done but
to a little extent. It is therefore necessary to
characterize  Jordan  homomorphisms  on
semisimple Banach algebras in terms of their
spectrum. This work established that Jordan
homomrphism is a unital surjection, spectral
isometry and unital surjective spectral isometry
on semisimple Banach algebras.
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