2022;5(2):47-51. ISSN: 2581-5954

Machine Learning and Embedded Sensor-Based Flood Monitoring System

M. Rajkumar¹, S. Omkumar^{2*}, Vikram N³, Viyyapu Lokeshwari Vinya⁴

¹Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

²Department of Electronics and Communication Engineering, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya University, Kancheepuram, Tamil Nadu, India.

³Department of Electronics and Communication Engineering, Sona College of Technology, Salem, Tamil Nadu, India.

⁴Department of Computer Science and Engineering, Vardhaman College of Engineering, Telangana, India.

*Corresponding author: omkumar1234@gmail.com

Abstract: Asphyxiation and flooding will have a profound adverse effect on humanity and its framework. Choking may occur as the patient moves to a deeper area or may be caused by a patient's underlying medical condition. Floods are catastrophic events typically caused by waterway flow, weather patterns, or unnatural climatic effects resulting from extreme weather conditions. From now on, IoT, driven by sensory innovation, will help effectively mitigate this impact on humanity. This is a test guide for everyone to avoid the risk of suffocation and can help people avoid disasters like floods. This study offers IoT devices equipped with sensors and looking at systems to judge the flood level, the customer situation, and water level, even while the consumer is in the water. Then, using the portable software to become aware and inform the consumer. AI calculations were performed to determine the quantity order.

Keywords: Safety, Flood, Machine learning, Embedded system, Early warning system

INTRODUCTION

Devices constitute an important part of modern life and are especially automated devices based on complete hardware devices. Advances in devices that access nano components are enabling the picture of microcontroller engineering and information management capabilities. Modifying the environment is one of the big issues the Sector Chiefs considered. [1] It affects the depletion of the ozone layer, melting polar ice caps and increasing sea levels, activating meteorological anomalies. Anomalies such as the dark brown tropical hurricane, which caused billions of dollars in property damage and millions of lives, have hit a handful of countries in the sector. [2] Flood Strips are one of those minor disturbances that can also do damage, but prevent their effects on living souls. [3]

Judging by the call, it is judged that there is a sufficient possibility of loss because there are few flood warnings and flood marches are increasing rapidly, while people are referring to vulnerable areas. But here and there, managers are unaware or unaware of the water level, which can cause flow stops that can cause overflow inside the waterway. [4] This situation is especially preventable because there is a check structure. Similar systems are used in some existing countries, but the statistics available from the total population are limited, and those miles are usually transmitted through a workshop or meteorological station and transferred to the response agency at the moment. It is to save ordinary citizens. [5]

Weather data predicts that rainfall will affect the likelihood of flooding, and many AI models have been evaluated for flood prediction models. [6] The initiation of the commandments on paper gives AI the initiation of fashion. Paintings were introduced in such a way that flooding was anticipated, limiting the scarcity of human existence, preventing disasters and reducing the destruction of homes and properties. [7] This article proposes an

artificial intelligence flood prediction strategy that predicts the next month's rainfall by analyzing the rainfall facts based on the already established facts. [8].

Customer reputation systems and flood prediction systems have been around for a long time in some parts of the world. Therefore, some test papers and articles were completely related to the subject of our study. Most of the samples are specific about the intended subject of the exam but given the fact that first-place middlemen are like that, the most important records are gathered from these documents. [9]. As with any related task, several techniques are used to strengthen the structure. In relation to this study, it features an open management API that stores and enhances sensor statistics by utilizing the IoT 'ThingSpeak' digital layer and displays the output of the detected statistics in a graphical format. In this project, sensors perform IoT operations to detect and monitor sea level disturbances due to heat, odor, temperature, moderate force, rainfall detection, air quality, barometric stress and environmental factors. [10]

DFO uses MODIS, Terra, and Aqua sensors to determine dive mode and cause channel and degree of flooding due to repetition of maximum number of cases per day. These records have been online for several weeks. In any case, the recording will be delayed by at least a day or two due to the approximate delay due to the satellite TV Bridge to update the estimate. [11] The Dartmouth Active Major Flood Archive provides records gathered from outstanding information and overviews of widespread flood events across the globe. Affected areas are highlighted using GIS. Several methods have been proposed in element-based image extraction and element applications, such as proof of sharpness, a standard arrangement of images supplied with a single pixel, called a pixel-based image pool. Each unmarried pixel with similar creepy characteristics is collected into an equal class. [12] The objective full image doesn't look like a pixilated full image at the familiar junctions with giant photocells. Adjacent pixels can provide similar base ratings. [13] This affects pixel space, surface, shape and country processing of photo data. The use of general object-based photo management is putting pressure on many areas, including transportation and urban planning. The protrusion positions of the SPOT photos using the usual edit-based approach were applied to the mangroves. [14]

PROPOSED SYSTEM

The framework can be divided into touch hub and professional hub. The basis of this plan is the assumption that water quality testing is performed in hazardous locations. [15] A sensory hub is a hub located next to a stream, and a specialized hub, i.e. a statistic observer, is in a covered area. Each node is described through a Figure 1.

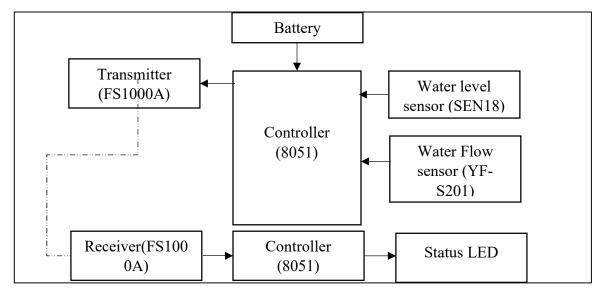


FIGURE 1. Block Diagram

In this figure 1, the sensor hub contains a water motion sensor for tempo measurement and an ultrasonic sensor for water level quantification. Information received via this sensory hub may be treated as a false justification [16]. After giving the fur justification effect [16], the statistics are sent via phone to a specialized center and the beneficiaries are identified by RGB LEDs.

RESULTS

An advantageous power is to record the water level and the potential of each stat being water level. The number of these registrations is resolved naturally. In this case the factor is very high, but it increases the number of perceivable situations, and additional properties are needed for the calculation because the regulator is used to cope with the system. Procedures are divided into three registration capacities: slow, normal, and fast. Here, the enrollment paintings are expected in meters/second.

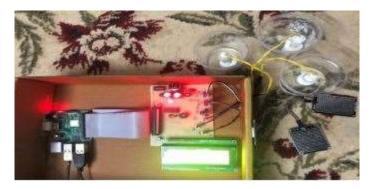


FIGURE 2. Prototype of the System

The above association represents a regular run of a flood check, this version estimates the water level within a flood preparation area, and a water sensor and rainfall sensor measure the pressure of the flood. Some sections were identified in Table I. Step # for introducing multiple tests, a sensor step to present sensor readings, and segment relaxation provide an example of a counter-evaluation device such as a flow meter. The unit of measure is meters/second. Inspection was performed on more than one copy and gave another error 0608%.

No	Sensor (M / sec)	Other (m / sec)	Error
1	22	21.86	0640
2	24	23.8	0.840
3	48	47.61	0.819
4	56	55.98	0.036
5	62	61.9	0.612
6	68	67.7	0.443
7	72	71.9	0.139
8	88	87.7	0.342

TABLE 1. Water Speed Sensor Data's

This test is performed to quantify whether the sensors used are sufficient. It's like looking beyond that. Sensor navigation is contrasted with a ruler. Table II confirmed the results in several parts. Section # is intended to display the test range, a sensor segment to display the sensor readings, and a special segment to display the ruler readings. This view is completed multiple times when the record item view changes. The tool is in centimeters. The error obtained in this review is 4.640%.

TABLE 2. Water Level Sensor Data's

No	Sensor (M / sec)	Other (m / sec)	Error
1	35.5	36	1.389
2	41.7	42.4	1.651
3	47.9	48.8	1.844
4	54.1	55.2	1.993
5	60.3	61.6	2.110
6	140.8	132.6	6.184
7	97.25	100	2.500
8	103.7	106.4	2.538

CONCULSION

When a dam bursts, it causes flooding, draining huge amounts of water. The result is that most of the water enters the soil, overcoming stagnation and causing flooding in areas that are prone to flooding. Post-flood water bodies or reservoirs, deprivation of housing and working properties, and the circulation of sewage from roads, waste sites, and complex runoffs that cause the growth of water containing microorganisms result in the spread of many diseases. The implementation of a flood inspection and warning system will enable the minimization of flood openings, allowing the area to drain with time, thereby gaining valuable time and support to manage flood patterns. Various representations of the data can be viewed, making it easy to implement predictive methodologies. The assumptions indicate that the AI model will not perform well in predicting precipitation due to variations in precipitation patterns. In any case, this approach can be applied to calculate any region of India with given data. Helps plan and complete flood monitoring and warning structures, and predict rainfall for effective use of fate.

REFERENCE

- [1]. J. C. Whitcomb and H. M. Morris, 1961, "The Genesis Flood," Spons Agency Pub Date, 60, pp.60-71
- [2]. K. K. Hirschboeck, 1988, "Flood hydro climatology," Flood geomorphology, pp.27-49.
- [3]. V. Baker, R. C. Kochel, and P. C. Patton, 1988, "Flood geomorphology," *Flood geomorphology, Wiley-Interscience*.
- [4]. B. Merz, H. Kreibich, R. Schwarze, and A. Thieken, 2010, "Review article: Assessment of economic flood damage," *Natural Hazards and Earth System Sciences*, **10(8)**, pp.1697-1724.
- [5]. D. McCullough, 2007, "Johnstown Flood," Simon and Schuster. pp.1-96
- [6]. S. Birkholz, M. Muro, P. Jeffrey, and H. M. Smith, 2014, "Rethinking the relationship between flood risk perception and flood management," *Science of the Total Environment*, **478**, pp.12-20.
- [7]. A. Dundes, 1988, The flood myth. Univ of California Press,
- [8]. H. L. Cloke, and F. Pappenberger, 2009, "Ensemble flood forecasting: A review," *J. of hydrology*, **375(3-4)**, pp.613-626.
- [9]. Z.W.Kundzewicz, and K. Takeuchi, 1999, "Flood protection and management: quo vadimus?," *Hydrological Sciences J.*, **44(3)**, pp.417-432.
- [10]. L. A. Voesenek, and J. Bailey-Serres, 2015, "Flood adaptive traits and processes: an overview," *New Phytologist*, **206(1)**, pp.57-73.
- [11]. W. Kellens, T. Terpstra, and P. De Maeyer, 2013, "Perception and communication of flood risks: A systematic review of empirical research," *Risk Analysis: An Int. J.*, **33(1)**, pp.24-49.
- [12]. P. Todorovic, and J. Rousselle, 1971, "Some problems of flood analysis," *Water Resources Res.*, **7(5)**, pp.1144-1150.
- [13]. U. C. Nkwunonwo, M. Whitworth, and B. Baily, 2020, "A review of the current status of flood modelling for urban flood risk management in the developing countries," *Sci. African*, 7, pp.1-16

- [14]. J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, and M. C. Llasat, 2014, "Understanding flood regime changes in Europe: a state-of-the-art assessment," *Hydrology and Earth System Sciences*, **18**(7), pp.2735-2772.
- [15]. A. Ali, B. Thangalakshmi, and V. Beaulah, 2017, "IoT based disaster detection and early warning device," *Int. J. of MC Square Sci. Res.*, **9(3)**, pp.20-25.
- [16]. S Murugan, S. Mohan Kumar, and T.R. Ganesh Babu, 2020, "CNN model Channel Separation for glaucoma Color Spectral Detection," *Int. J. of MC Square Scientific Res.* **12(2)**, pp. 1-10.