Hybrid Fused Algorithms for the Prediction of Feedback in the Education Systems

Kirankumar G. Sutar¹, Mahadev S. Patil^{2*}

¹Department of Electronics and Telecommunication Engineering, Bharati Vidyapeeth's Institute of Technology, Sangli, Maharashtra, India.

²Department of Electronics and Telecommunication Engineering, Rajarambapu Institute of Technology, Sangli, Maharashtra, India.

*Corresponding author: mahadev.patil@ritindia.edu

Abstract. Student achievement expectations assist educational partners in making proactive decisions and resolving conflicts in terms of improving the nature of coaching and suit current societal unique needs. The verification of components for an understudy's display figure not only plays an important role in increasing assumption precision, but it also aids in the development of fundamental plans for the improvement of an understudy's educational show. There are distinctive component choice calculations for foreseeing the presentation of understudies, but the examinations revealed in the writing guarantee that there are various upsides and downsides of existing element determination calculations in choice of ideal elements. In the proposed hybrid framework fused the Support Vector Machine and Map reduce algorithm to predict the feedback in the education system. Framework, it gives ML Algorithm to viable forecast of different sickness events in illness successive social orders. Contrasted with a few average estimate algorithms, the computation precision of our proposed calculation comes to 94.8% with assembly speed.

Keywords: Machine learning, Support Vector Machine, Map Reduce Algorithm, feedback, education system.

INTRODUCTION

Education is one of society's guiding foundations. It cleans the individual as well as the understudies' knowledge. The current guidance system may not be appropriate for the population's changing and dynamic needs [1]. Anticipating understudy execution ahead of time is an important part of the new guiding system's perspective. Academic affiliations may fulfil the strong needs of the overall populace by studying the understudy's data and producing various estimates from it, as understudies are key accomplices of the educational systems [2]. Furthermore, the future results of assumptions can be useful in devising tactics to reduce the idea of preparation. Higher-quality preparation keeps on producing proficient and noteworthy understudies. This focuses on dissecting the useful data [3]. Understudy execution conjecture models aid in the dissection of understudy data using various data mining techniques. Moreover, numerous understudy execution assumption models have been developed to work with the understudy execution figure [4]. Both the investigation of the neighborhood informational region and the understudy execution figure models have given them a lot of thought. The issue of figure of understudy "grades, GPA (Grade Point Average), CGPA, and Pass/Fail Course is addressed by understudy execution assumption models". In EDM (Educational Data Mining), the purpose of understudy present presumption structures isn't just to accomplish good precision in figure models, but also to assist informational partners in anticipating understudy presentations [5].

The main assets of every neighborhood are the understudies, and the most critical position of any insightful affiliation is to provide superior instruction to its understudies. Furthermore, superior instruction helps to develop gifted and notable understudies [6]. With the help of various data mining tools, understudy execution models aid in the analysis of understudy data. The enhancement of understudies' show estimation models has gotten a lot of attention [7]. Making understudy execution estimate models require two distinct methodologies. One is a controlled operation, while the other is a stand-alone procedure. A plan is a method of learning that is well-coordinated [8].

Received: 11-11-2021 Revised: 14.12.2021 Accepted: 21.12.2021 Licensed under a CC-BY 4.0 license | Copyright (c) by the authors

According to a game plan approach, 71.4 percent of assessment publications on understudies show estimation models. For the presenting assumption models, it is the best system [9]. The "genuine factor is unquestionably depicted as that which we desire to anticipate in the planning method, whether grades, GPA, CGPA, or understudies PASS/FAIL [10]. With the support of the gathering strategy, we were able to zero the under studies display of the gauge model" [11].

Working on the nature of instruction is one of the difficulties for the instructive foundations, the improvement in schooling isn't just needed for collecting a more significant level of information yet additionally giving powerful offices of training that can help understudies in accomplishing their scholastic goals with no issue [12]. Recognizable proof of elements influencing the exhibition of understudies is vital to work on the nature of schooling [13]. Understudy execution forecast models assist the instructive foundations with expanding the nature of schooling by dissecting the understudy's information to make the scholastic key designs for the improvement of the understudy's scholarly exhibition [14]. Anyway, the review on understudy execution forecast is yet inadequate [15]. The presentation of understudy expectation model mostly relies upon the chose highlights in the respective dataset [16].

The fundamental focal point of existing element choice techniques in EDM is to further develop the expectation exactness of understudy execution forecast model from this time forward, just zeroing in on the component's relationship with the objective class [17]. There are mostly two kinds of element determination calculations, channel, and covering highlight choice calculation. The fundamental focal point of existing understudy execution forecast models is utilizing channel highlight determination calculation, and these current component choice calculations have issues of disregarding conditions and affiliated elements (association of elements with the classifier) [18]. The accentuation of existing examination on understudy execution expectation utilizing highlight choice is on lessening the quantity of elements to further develop the forecast precision of the model [19]. The two primary kinds of element determination calculations, channel and covering both have various upsides and downsides. Crossover includes determination and takes the benefits of both channel and covering highlight choice methodologies [20].

PROPOSED SYSTEM

The investigation precision is decreased when the nature of education information in fragmented. Be that as it may, that current work for the most part viewed as organized information. There could be no legitimate techniques to deal with semi organized and unstructured [21]. The examination precision is expanded by utilizing Support Vector Machines and Map Reduce calculation [22]. Our application will be at reasonable expense. SVM Algorithm predicts feedback in the educational system [23]. Maps reduce Algorithm is done to augment utilitarian viability. It decreases the Query recuperation time. Accuracy additionally evolved using ML computation. The proposed system starts with the likelihood that it was not executed by the begetters [24]. It implements the SVM approach for diagnosing illnesses, which considers a wide range of probable objections [25]. Figure 1 shows the proposed hybrid feedback prediction architecture in the education system.

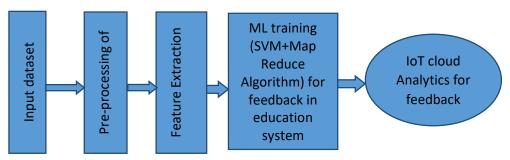


FIGURE 1. Proposed Hybrid Feedback Prediction Architecture in Education System

It is part Map Reduce estimation for apportioning the data with the ultimate objective that a requesting would be analyzed particularly in the unequivocal bundle, which will augment strong capacity yet cut request rescue time [26]. As a result, this makes the event broadly accessible to anyone at a low cost. Figure 1 shows the proposed design. After the division interaction, highlight separated which are then feed for preparing the organizations [31]. In the proposed design, conventional preparing networks are supplanted with a SVM characterizes by tracking down the "hyper plane that expands the edge between the two classes. Backing vectors are the vectors (cases) that characterize the hyper plane [27]. It is a quick and solid arrangement calculation with a restricted measure of information that performs quite well".

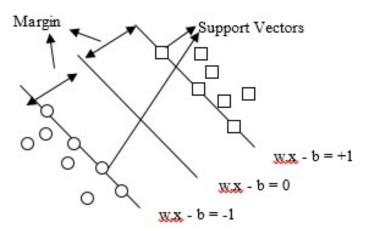


FIGURE 2. SVM Structure

Figure 2 addresses the construction of SVM wherein "a line is utilized to recognize the various classes into two sections. It comprises of three lines where line w.x - b = 0 addresses the edge line since it is utilized to isolate two examples. The lines w.x-b = 1 and w.x-b = -1 are the lines on the two sides of the edge column [28]. Together, these three lines make the hyper plane isolating the given examples and these isolated examples are known as help vectors. The last yield of the SVM is taken care of into ANN to work on the precision".

The "Apache Hadoop programming strategy" includes Map Reduce as a key component. Hadoop allows for the distribution of enormous ill-defined reality sets across item processor bundles, with each lump of the pack covering its own pressing [29]. Two urgent assignments benefit from the use of Guide Reduce: It builds a path to multiple hubs inside the gathering or guide, then groups and reduces the results from each hub into a consistent response to a request [30].

A boom procedure is a processor bundle whose assurance is to pay for information from a source like a data set, XML stream or an accounting page, and use it to create an article in a course of action which substance a particular human dissemination. Here the framework is making expanding blast of patient".

RESULTS AND DISCUSSIONS

The proposed hybrid framework fused the Support Vector Machine and Map reduce algorithm for predicting feedback in the education system. The proposed system starts with the likelihood that it was not executed by the begetters. SVM procedure is for working out diseases similarly as processing the wide scope of different possible criticisms. Proposed method provides ML Algorithm to viable forecast of different sickness events in successive social sequence. Map Reduce estimation for apportioning the data with the ultimate objective that a requesting would be analyzed particularly in the unequivocal bundle, which will augment strong capacity yet cut request rescue time. The evaluation parameters are shown in Figure 3 to validate the proposed model performance.

```
Sensitivity =TP / (TP + FN)
Specificity = TN / (TN + FP);
Accuracy = (TP + TN) / (TP + FP + TN + FN) ·
Where,
TP = True Positive
TN = True Negative
FN=· False negative
FP= False positive
```

FIGURE 3. Evaluations Parameters.

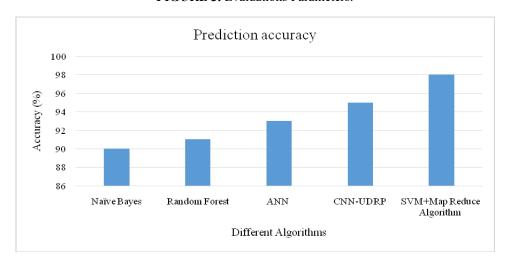


FIGURE 4. Prediction Accuracy for the Proposed Hybrid Algorithm with other existing Algorithms

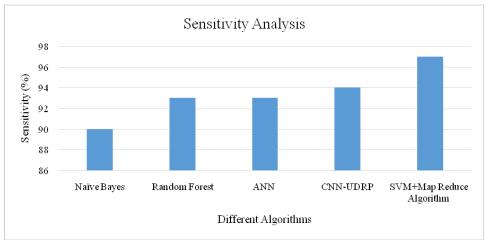
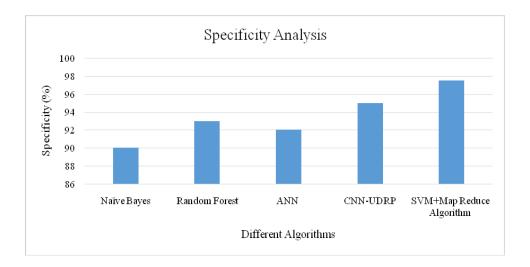



FIGURE 5. Sensitivity Analysis of Proposed Hybrid Algorithm with other existing Algorithms

FIGURE 6. Specificity Analysis of Proposed Hybrid Algorithm (SVM + Map Reduce Algorithm) with other existing Algorithms

The above Figure 4, Figure 5, and Figure 6, infers that the "proposed hybrid machine learning algorithm outperforms all other existing algorithms in terms of classification accuracy, Sensitivity and specificity".

CONCLUSION

In this paper, hybrid techniques are presented which incorporate SVM and map reduce algorithm for the prediction of feedback in the education system. It likewise utilizes Map Reduce calculation for apportioning the information. The proposed system starts with the likelihood that it was not executed by the begetters. Its contraption SVM procedure is for working out diseases similarly as processing the wide scope of different possible criticisms. Framework, it gives ML Algorithm to viable forecast of different sickness events in illness successive social orders. Map Reduce estimation for apportioning the data with the ultimate objective that a requesting would be analyzed particularly in the unequivocal bundle, which will augment strong capacity yet cut request rescue time. The conspiring exactness of our proposed calculation comes to 94.8% with an ordinary speed for the proposed hybrid framework which is speedier than CNN-UDRP. Hence this framework is highly suitable for feedback prediction in educational systems.

REFERENCES

- [1]. M. A. Al-Barrak and M. S. Al-Razgan, 2015, "Predicting students' performance through classification: A case study," *J. of Theoretical & Applied Information Tech.*, **75(2)**, pp. 167–175.
- [2]. A. A. Aziz, N. H. Ismail, F. Ahmad and H. Hassan, 2015, "A framework for students' academic performance analysis using naïve Bayes classifier," *Jurnal Teknologi (Sciences & Eng.)*, **75(3)**, pp. 13–19.
- [3]. N. Buniyamin, U. bin Mat and P. M. Arshad, 2015, "Educational data mining for prediction and classification of engineering students achievement," in *Int. Conf. on Eng. Education, Japan, IEEE*, pp. 49–53.
- [4]. L. Ramanathan, S. Dhanda and S. Kumar, 2013, "Predicting students' performance using modified ID3 algorithm," *Int. J. of Eng. and Tech.*, **5(3)**, pp. 2491–2497.
- [5]. C. Del Río and J. P. Insuasti, 2016, "Predicting academic performance in traditional environments at higher education institutions using data mining: A review," *Ecos de la Academia*, **2(4)**, pp. 185–201.
- [6]. P. Thakar, 2015, "Performance analysis and prediction in educational data mining: A research travelogue," *Int. J. of Computer Application*, **110(15)**, pp. 60-68.

- [7]. M. Ramaswami and R. Bhaskaran, 2009, "A study on feature selection techniques in educational data mining," *J. of Computing*, **1(1)**, pp. 7–11.
- [8]. T. Velmurugan and C. Anuradha, 2016, "Performance evaluation of feature selection algorithms in educational data mining," *Performance Evaluation*, **5(2)**, pp. 131–139.
- [9]. A. Abid, I. Kallel, I. J. Blanco and M. Benayed, 2017, "Selecting relevant educational attributes for predicting students' academic performance," in Int. Conf. on Intelligent Systems Design and Applications, Malaysia, Springer, 736, pp. 650–660.
- [10]. A. M. Shahiri, W. Husain and N. A. A. Rashid, 2017, "A proposed framework on hybrid feature selection techniques for handling high dimensional educational data," *AIP Conf. Proc., Malaysia, AIP Publishing*, **1891**, pp. 1-7.
- [11]. A. M. Shahiri and W. Husain, 2015, "A review on predicting student's performance using data mining techniques," *Procedia Computer Science*, **72**, pp. 414–422.
- [12]. K. Shaukat, S. Luo and V. Varadharajan, I. A. Hameed and M. Xu, 2020, "A survey on machine learning techniques for cyber security in the last decade," *IEEE Access*, **8**, pp. 222310–222354.
- [13]. S. K. Yadav and S. Pal, 2012, "Data mining application in enrollment management: A case study," *Int. J. of Computer Applications*, **41(5)**, pp. 1–6.
- [14]. M. Chalaris, S. Gritzalis, M. Maragoudakis, C. Sgouropoulou and A. Tsolakidis, 2014, "Improving quality of educational processes providing new knowledge using data mining techniques," *Procedia-Social and Behavioral Sciences*, **147**, pp. 390–397.
- [15]. K. Shaukat, I. Nawaz, S. Aslam, S. Zaheer and U. Shaukat, 2017, In Student's Performance: A Data Mining Perspective, *LAP Lambert Academic Publishing: Saarbrücken, Germany*.
- [16]. A. B. F. Mansur, N. Yusof and A. H. Basori, 2017, "Comprehensive analysis of student's academic failure classification through role-sphere influence and flow betweeness centrality," *Procedia Computer Science*, 116, pp. 509–515.
- [17]. M. Doshi and S. K. Chaturvedi, 2014, "Survey of feature selection algorithms in higher education," *Int. J. of Computer Applications in Eng. Sciences*, **4(1)**, pp. 5.
- [18]. H. M. Harb, A. A. Zaghrot, M. A. Gomaa and A. S. Desuky, 2011, "Selecting optimal subset of features for intrusion detection systems," *Advances in Computational Sciences and Tech.*, **4(2)**, pp. 179–192.
- [19]. C. Romero, J. R. Romero and S. Ventura, 2014, "A survey on pre-processing educational data," *In Educational Data Mining, Cham: Springer*, pp. 29–64.
- [20]. K Shaukat, F Iqbal, TM Alam, GK Aujla, L Devnath, AG Khan, R Iqbal, I Shahzadi and A Rubab, 2020, "The impact of artificial intelligence and robotics on the future employment opportunities," *Trends in Computer Science and Information Tech.*, **5(1)**, pp. 50–54.
- [21]. K. Shaukat, T. M. Alam, M. Ahmed, S. Luo, I. A. Hameed, MS Iqbal, J Li and MA Iqbal, 2020, "A model to enhance governance issues through opinion extraction," *In 2020 11th IEEE Annual Information Tech., Electronics and Mobile Comm. Conf., Vancouver, IEEE*, pp. 511–516.
- [22]. K. Shaukat, T. M. Alam, I. A. Hameed, S. Lu0, G. Li, GK Aujla and F Iqbal, 2020, "A comprehensive dataset for bibliometric analysis of SARS and coronavirus impact on social sciences," *Data in Brief*, **33**, pp. 1-7
- [23]. U. Javed, K. Shaukat, I. A. Hameed, F. Iqbal, T. M. Alam and S. A Luo, 2021, "A review of content-based and context-based recommendation systems," *Int. J. of Emerging Technologies in Learning*, **16(3)**, pp. 274–306.
- [24]. E. Wright, Q. Hao, K. Rasheed and Y. Liu, 2018, "Feature selection of post-graduation income of college students in the United States," in Int. Conf. on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation, USA, Springer, pp. 38–45.
- [25]. C. Anuradha and T. Velmurugan, 2016, "Feature selection techniques to analyze student academic performance using naïve Bayes classifier," *In the 3rd Int. Conf. on Small & Medium Business, Vietnam*, pp. 345–350.
- [26]. A. Mueen, B. Zafar and U. Manzoor, 2016, "Modeling and predicting students' academic performance using data mining techniques," *Int. J. of Modern Education and Computer Science*, **8(11)**, pp. 36-42.
- [27]. C.-H. Cheng and W.X. Liu, 2017, "An appraisal model based on a synthetic feature selection approach for students' academic achievement," *Symmetry*, **9(11)**, pp. 1-18.

- [28]. K. Shaukat, I. Nawaz, S. Aslam, S. Zaheer and U. Shaukat, 2016, "Student's performance in the context of data mining," *In 2016 19th Int. Multi-Topic Conf., Pakistan, IEEE*, pp. 1–8.
- [29]. D. Jain and V. Singh, 2018, "Feature selection and classification systems for chronic disease prediction: A review," *Egyptian Informatics J.*, **19(3)**, pp. 179–189.
- [30]. J. Xie and C. Wang, 2011, "Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases," *Expert Systems with Applications*, **38(5)**, pp. 5809–5815.
- [31]. B Pattanaik, and S. Murugan, 2017, "Cascaded H-Bridge Seven Level Inverter using Carrier Phase Shifted PWM with Reduced DC sources." *Int. J. of MC Square Sci. Res.* **9(3)**, pp. 30-39.