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Abstract 

The purpose of Fast Fourier Transform (FFT) is to compute the frequency domain sequence from its 

time domain sequence. The Fast Fourier Transform is improved version of Discrete Fourier Transform 

(DFT), which used to perform the computations faster than DFT approach. Our proposed technique has 

modified architecture of FFT processor in such a way that it has least number of arithmetic operations to 

perform the same computation. Whenever dealing with FFT algorithms, the address generation schemes 

need to be done for both input data and twiddle factors. In this approach the multipliers are enabled 

whenever necessary, which reduces the dynamic power consumption. Generally the number of 

arithmetic operations such as multiplications and additions decides the computational complexity of the 

algorithm. In this approach the numbers of complex multiplications are significantly reduced as 

compared to Radix-2 FFT algorithm. Similarly the number of used flipflops, Look Up Tables, slices and 

memory are reduced comparing with previous design. Hence the proposed architecture consumes less 

dynamic power, have reduced number of multiplications and area efficient. 
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Introduction 

The Digital Signal Processors found many 

applications as it deals with operations on 

signals. Many real time applications involves 

digital signal processors called DSPs. Such 

processor seems to be fast, have less chip area 

and low power consumption. These constraints 

leads to VLSI implementation of FFT processors 

as described in [1]. The FFT Processors can have 

either shared memory architecture or pipelined 

architecture. The difference is that the pipelined 

architecture offers increased throughput at the 

expense of more hardware resources whereas the 

shared memory architecture uses less hardware 

resources while giving the slower throughput, 

which is shown in [2]. 

Since the frequency domain signal is more 

prominent than the time domain signal, it is 

preferred widely in many signal processing 

applications. The frequency domain signal gives 

information about both magnitude and phase 

components. It additionally involves harmonics 

and hence the error analysis seems to be easier. 

Fourier transform cannot be calculated on any 

digital processor since it is continuous in nature. 

This problem can be solved by evaluating 

Fourier transform at only discrete points using 

[3]. 

In this approach, the shared memory 

architecture of split radix FFT processor is 

implemented. It requires two address generation 

schemes for both input data and twiddle factors 

as in [4]. As mentioned earlier, the SRFFT 

algorithm has modified butterfly unit as 

compared to radix-2 butterfly unit of FFT 

Algorithm. Initially two input data and twiddle 

factors are provided by memory banks. The 

butterfly unit performs the computations 

according to the equations described. The output 

sequence is obtained in bit reversed order and 

stored back to the memory banks by replacing 

the old data. This is the important operation 

performed by butterfly architecture at each clock 

cycle. Hence the butterfly unit is represented as 

core of the algorithm. 

 Previous work 

 Previous work of the project is that the 

FFT processor designed using radix-2 butterfly 

architecture. Radix-2 FFT algorithm categorized 

into two methods: Decimation In Time(DIT) and 

http://ijie.gjpublications.com/
mailto:veena3011@gmail.com


Praveena and Dhilipmohan, 2017.     Design of low power split radix FFT processor with reduced computational complexity 

©2017 The Authors. Published by G J Publications under the CC BY license. 240 

Decimation In Frequency(DIF). In our previous 

work [4] Radix-2 DIF algorithm is preferred. 

Radix-2 means that the number of samples must 

be an integral power of two and it is generally 

based on divide and conquer approach. The 

decimation is done in frequency domain, hence 

called as decimation in frequency algorithm. 

The N-point Discrete Fourier Transform is 

given by eq. 1. 

X[K] =   (1) 

Where k=0, 1... N-1 and W
nk

N= . If we 

split X[k] into even and odd terms, the equations 

of radix-2 FFT can be derived as eq. 2 and 3. 

X(2K) =  W 
nk

 N/2 (2) 

X(2K+1) =   W
n

N W
nk

N/2 (3) 

Based on above equations the butterfly 

architecture is designed as shown in fig. 1 and  

the stages of decimation is shown in fig. 2, 

which are used to process the input data in 

conjuction with twiddle factors as in [5]. The 

algorithm mainly involves arithmetic operations 

to perform the computation. The address 

generation techniques are used to fetch the data 

and twiddle factors from RAM and ROM 

respectively. The number of inputs will be 2 and 

16 for 2-point and 16-point FFT architectures 

respectively. This input includes both real part 

and imaginary parts and therefore the output also 

interpreted in real part as well as imaginary 

parts. 

 
Fig. 1. Simple flow graph of 2-point Radix-2 

DIF FFT 

 

Fig. 2. Decimation Stages of 16-point Radix-2 

DIF FFT 

There are two important drawbacks of the 

previous design, which are identified in [6] and 

[7]. First, it could not use the multiplier gating 

technique to reduce unnecessary switching 

activities hence the dynamic power consumption 

is high. Second, it involves trivial multiplication 

of twiddle factors with input data, which leads to 

more number of complex multiplications. Our 

proposed technique solves these two major 

issues. 

Proposed methodology 

In this section, the methodology of Split 

Radix FFT Algorithm was discussed briefly. 

Unlike radix-2 FFT algorithm the split radix FFT 

Architecture makes use of both radix-2 and 

radix-4 computations. The basic principle behind 

the SRFFT algorithm is that the radix-2 index is 

mapped to even index terms and radix-4 index is 

mapped to odd index terms using [8] and [9]. 

The equation for even index term is same as that 

of Radix-2 FFT technique and is given by eq. 4. 

X(2K) =  W 
nk

 N/2 (4) 

Whereas the equation for odd index term is 

further splitted into two equations, which are 

distinct from Radix-2 FFT technique, given as 

eq. 5 and 6. 

X(4K+1) = W
 n

N W
nk

N/4 (5) 

X(4K+3) = W
n

N W
nk

N/4 (6) 

Based on the above equations the flow graph of 

4-point Split radix FFT is constructed, which is 

shown in fig. 3. In this way the basic flow graph 

of Split Radix FFT differs from conventional 

Radix-2 FFT technique, which can be identified 

using fig. 3. 

 
Fig. 3. Simple Flow Graph of 4-point Split Radix 

FFT 

Shared memory processor 

The block diagram of shared memory 

processor is shown in Fig. 4. It includes two 

memory banks called RAM and ROM to store 

the FFT data and twiddle factors respectively. It 

is shown that the butterfly architecture of split 

radix algorithm is same as radix-2 FFT except 

the locations and values of twiddle factors on 

each leg using [9] and [10]. 
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Fig. 4. Architecture of shared memory processor 

As mentioned before at each clock cycle 

two input data and a twiddle factor are fetched 

from memory bank, the butterfly unit used to 

process them based on addition and 

multiplications at each pass.  The calculated 

result is stored back to the memory, which 

replaces the old data. The butterfly counter keeps 

the track of addresses, which have been used. 

The address generation logic is almost same for 

both Radix-2 FFT method and Split Radix FFT 

method. Due to mixed radix property of split 

radix algorithm, the location of twiddle factors is 

irregular. 

Butterfly architecture of Split Radix FFT 

The main difference of butterfly 

architecture of Split Radix FFT is that it involves 

both trivial and nontrivial multiplications of 

twiddle factors. Here the trivial multiplications 

involve the twiddle factor ‘Wn’ and this 

contributes to actual multiplications. Whereas 

the nontrivial multiplication involves the twiddle 

factor ‘j’ and this multiplication is just swapping 

real and imaginary parts instead of an actual 

multiplication as mentioned in [11]. This portion 

of nontrivial multiplication leads to less number 

of complex multiplications. The multipliers are 

enabled whenever required; it is referred to as 

multiplier gating technique. As Split Radix FFT 

uses mixed radix property, the equations defined 

above results in L shaped architecture. There is 

totally five L shaped butterfly architecture for 

four passes. In this approach 16-point FFT is 

considered and the data word length is 32 bit. 

Each input sequence comprised of real and 

imaginary parts and the output sequence is also a 

complex one. 

Address generation logic 

The address generation of twiddle factors 

is an important aspect in the proposed technique. 

Butterfly counter, pass counter, L Flag and J 

Flag are fundamental units used in this logic. 

The address generation is based on following 

two assumptions using [12]. First, if one 

butterfly unit is not within the L block in current 

pass, it will be definitely in L block in next pass. 

Second, if one butterfly unit need to be 

multiplied with ‘j’ in current pass, then the same 

butterfly unit should be multiplied with ‘Wn’ in 

next pass. In previous design, the twiddle factors 

need to be multiplied for each butterfly; 

therefore the ROM banks are always enabled. In 

the proposed design, the L block signal enables 

the ROM banks only when the twiddle factors 

required as shown in [13]. This is an added 

advantage in this technique, which reduces 

further power consumption. 

It is important to mention that in 

conventional implementations, the twiddle 

factors are mandatory for each and every 

butterfly unit, hence the ROM banks are enabled 

at every time. But proposed technique shows that 

the L Flag signal could be used as the enable 

signal for the ROM memory, because if the 

butterfly belongs to the L block, no 

multiplication is required. This will reduces the 

power consumption significantly.  Because of 

this reason the ROM banks are enabled 

whenever required, our modified butterfly 

architecture leads to lesser number of switching 

activities and low dynamic power consumption. 

This factors leads to efficient utilization of 

memory banks. 

Results and discussion 

The conventional radix-2 FFT and SRFFT 

algorithms were developed in verilog code. Both 

are synthesized and simulated using Xilinx ISE 

9.1i targeting for Spartran3E family with 

XC3S500E device under the constraint of 100 

MHz. The test bench waveforms were simulated 

for 1-bit as well as 32-bit data word length for 

both the cases, which are shown in fig. 5 and fig. 

6 respectively. We can interpret the output 

sequence as a combination of real and imaginary 

parts from the simulation results. Compared with 

the radix-2 addressing schemes, our addressing 

method requires additional 2S−1-bit memory. 

However, the SRFFT algorithm has the irregular 

signal flow graph and makes the control of such 

processors more difficult than the fixed-radix 

ones. Although a software solution for the 

indexing problem is given, the indexing scheme 

is designed for the L butterfly structure, which is 

not suitable for the hardware implementation due 

to its uneven latencies. Some previous works use 

lookup tables to solve the indexing problem. It is 

obvious that the proposed algorithm requires 
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significantly less memory than the lookup table approach. 

 

Fig. 5. Output Waveform of 16-point Split Radix FFT (1 bit) 

 

Fig. 6. Output waveform of 16-point Split Radix FFT (32 bit) 

The power consumption is analyzed 

using Xilinx Xpower Estimator, which 

summarize the power consumption in terms of 

total on chip power and junction temperature. 

Total on-chip power is comprised of clock, 

Logic, RAM and DSP units. The device 

utilization summary of Xilinx ISE 9.1i provides 

detailed description about the ratio of number of 

used devices to number of available devices in 

the design. Table 1 gives the comparison results 

of previous and proposed technique in terms of 

number of Slices, Flip Flops, BRAM and LUTs. 

The multiplicative complexity is calculated using 

the mathematical equations and number of 

complex multiplications involved in the 

computation. Table 2 compares the power 

consumption, number of complex multiplications 

and device utilization percentage of Existing 

technique and proposed technique.  From the 

above table, we can conclude that our proposed 

design achieves low power consumption, utilizes 

the components efficiently and involves reduced 

number of multiplications as compared to 

existing technique. The reduction in these three 

parameters makes our proposed design more 

efficient than previous technique. 
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Table 1. Comparison of each component for 16-

point computation 

 

Components 

Radix-2 

FFT 

(Existing 

System) 

Split Radix 

FFT 

(Proposed 

System) 

Flip Flops 2734 2576 

LUTs 8278 8151 

BRAMs 12 8 

Table 2. Comparison of simulation results for 

power, area and multiplicative complexity 

 

Parameter 

Radix-2 

FFT 

(Existing 

System) 

Split Radix 

FFT 

(Proposed 

system) 

Dynamic Power 31.4 mW 23.7 mW 

Device 

Utilization 
80% 72% 

Number of 

complex 

multiplications 

32 18 

Conclusions 

In brief, the Split Radix FFT Processor is 

designed to reduce the dynamic power 

consumption at the cost of reduced hardware 

resources. The static power consumption of 

SRFFT remains the same as conventional 

technique. In the proposed architecture the 

number of non-trivial multiplications are 

reduced, which in turn reduces the multiplicative 

complexity of the algorithm. The switching 

activities of the design are significantly reduced 

due to its multiplier gating technique. All these 

above factors makes the proposed design to 

achieve over 18% lower power consumption 

comparing to radix-2 architecture when 

computing a complex valued transform. 
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