
 International Journal of Industrial Engineering Vol. 1, No. 8, 2017. Page 239-243.

 http://ijie.gjpublications.com/ ISSN: 2456-8449.

Research Article

Received: 01.11.2017; Received after Revision: 10.11.2017; Accepted: 12.11.2017; Published: 02.12.2017.
©2017 The Authors. Published by G J Publications under the CC BY license. 239

An Efficient Approach for Design of Low Power Split Radix FFT Processor with

Reduced Computational Complexity

A. Praveena*, P. Dhilipmohan

Department of Electronics and Communication Engineering, Arasu Engineering College,

Kumbakonam – 612501. India.

*Corresponding author’s e-mail: veena3011@gmail.com

Abstract

The purpose of Fast Fourier Transform (FFT) is to compute the frequency domain sequence from its

time domain sequence. The Fast Fourier Transform is improved version of Discrete Fourier Transform

(DFT), which used to perform the computations faster than DFT approach. Our proposed technique has

modified architecture of FFT processor in such a way that it has least number of arithmetic operations to

perform the same computation. Whenever dealing with FFT algorithms, the address generation schemes

need to be done for both input data and twiddle factors. In this approach the multipliers are enabled

whenever necessary, which reduces the dynamic power consumption. Generally the number of

arithmetic operations such as multiplications and additions decides the computational complexity of the

algorithm. In this approach the numbers of complex multiplications are significantly reduced as

compared to Radix-2 FFT algorithm. Similarly the number of used flipflops, Look Up Tables, slices and

memory are reduced comparing with previous design. Hence the proposed architecture consumes less

dynamic power, have reduced number of multiplications and area efficient.

Keywords: Fast Fourier Transform; Split Radix FFT; Twiddle Factors; Multiplier gating.

Introduction

The Digital Signal Processors found many

applications as it deals with operations on

signals. Many real time applications involves

digital signal processors called DSPs. Such

processor seems to be fast, have less chip area

and low power consumption. These constraints

leads to VLSI implementation of FFT processors

as described in [1]. The FFT Processors can have

either shared memory architecture or pipelined

architecture. The difference is that the pipelined

architecture offers increased throughput at the

expense of more hardware resources whereas the

shared memory architecture uses less hardware

resources while giving the slower throughput,

which is shown in [2].

Since the frequency domain signal is more

prominent than the time domain signal, it is

preferred widely in many signal processing

applications. The frequency domain signal gives

information about both magnitude and phase

components. It additionally involves harmonics

and hence the error analysis seems to be easier.

Fourier transform cannot be calculated on any

digital processor since it is continuous in nature.

This problem can be solved by evaluating

Fourier transform at only discrete points using

[3].

In this approach, the shared memory

architecture of split radix FFT processor is

implemented. It requires two address generation

schemes for both input data and twiddle factors

as in [4]. As mentioned earlier, the SRFFT

algorithm has modified butterfly unit as

compared to radix-2 butterfly unit of FFT

Algorithm. Initially two input data and twiddle

factors are provided by memory banks. The

butterfly unit performs the computations

according to the equations described. The output

sequence is obtained in bit reversed order and

stored back to the memory banks by replacing

the old data. This is the important operation

performed by butterfly architecture at each clock

cycle. Hence the butterfly unit is represented as

core of the algorithm.

 Previous work

 Previous work of the project is that the

FFT processor designed using radix-2 butterfly

architecture. Radix-2 FFT algorithm categorized

into two methods: Decimation In Time(DIT) and

http://ijie.gjpublications.com/
mailto:veena3011@gmail.com

Praveena and Dhilipmohan, 2017. Design of low power split radix FFT processor with reduced computational complexity

©2017 The Authors. Published by G J Publications under the CC BY license. 240

Decimation In Frequency(DIF). In our previous

work [4] Radix-2 DIF algorithm is preferred.

Radix-2 means that the number of samples must

be an integral power of two and it is generally

based on divide and conquer approach. The

decimation is done in frequency domain, hence

called as decimation in frequency algorithm.

The N-point Discrete Fourier Transform is

given by eq. 1.

X[K] = (1)

Where k=0, 1... N-1 and W
nk

N= . If we

split X[k] into even and odd terms, the equations

of radix-2 FFT can be derived as eq. 2 and 3.

X(2K) = W
nk

 N/2 (2)

X(2K+1) = W
n

N W
nk

N/2 (3)

Based on above equations the butterfly

architecture is designed as shown in fig. 1 and

the stages of decimation is shown in fig. 2,

which are used to process the input data in

conjuction with twiddle factors as in [5]. The

algorithm mainly involves arithmetic operations

to perform the computation. The address

generation techniques are used to fetch the data

and twiddle factors from RAM and ROM

respectively. The number of inputs will be 2 and

16 for 2-point and 16-point FFT architectures

respectively. This input includes both real part

and imaginary parts and therefore the output also

interpreted in real part as well as imaginary

parts.

Fig. 1. Simple flow graph of 2-point Radix-2

DIF FFT

Fig. 2. Decimation Stages of 16-point Radix-2

DIF FFT

There are two important drawbacks of the

previous design, which are identified in [6] and

[7]. First, it could not use the multiplier gating

technique to reduce unnecessary switching

activities hence the dynamic power consumption

is high. Second, it involves trivial multiplication

of twiddle factors with input data, which leads to

more number of complex multiplications. Our

proposed technique solves these two major

issues.

Proposed methodology

In this section, the methodology of Split

Radix FFT Algorithm was discussed briefly.

Unlike radix-2 FFT algorithm the split radix FFT

Architecture makes use of both radix-2 and

radix-4 computations. The basic principle behind

the SRFFT algorithm is that the radix-2 index is

mapped to even index terms and radix-4 index is

mapped to odd index terms using [8] and [9].

The equation for even index term is same as that

of Radix-2 FFT technique and is given by eq. 4.

X(2K) = W
nk

 N/2 (4)

Whereas the equation for odd index term is

further splitted into two equations, which are

distinct from Radix-2 FFT technique, given as

eq. 5 and 6.

X(4K+1) = W
 n

N W
nk

N/4 (5)

X(4K+3) = W
n

N W
nk

N/4 (6)

Based on the above equations the flow graph of

4-point Split radix FFT is constructed, which is

shown in fig. 3. In this way the basic flow graph

of Split Radix FFT differs from conventional

Radix-2 FFT technique, which can be identified

using fig. 3.

Fig. 3. Simple Flow Graph of 4-point Split Radix

FFT

Shared memory processor

The block diagram of shared memory

processor is shown in Fig. 4. It includes two

memory banks called RAM and ROM to store

the FFT data and twiddle factors respectively. It

is shown that the butterfly architecture of split

radix algorithm is same as radix-2 FFT except

the locations and values of twiddle factors on

each leg using [9] and [10].

Praveena and Dhilipmohan, 2017. Design of low power split radix FFT processor with reduced computational complexity

©2017 The Authors. Published by G J Publications under the CC BY license. 241

Fig. 4. Architecture of shared memory processor

As mentioned before at each clock cycle

two input data and a twiddle factor are fetched

from memory bank, the butterfly unit used to

process them based on addition and

multiplications at each pass. The calculated

result is stored back to the memory, which

replaces the old data. The butterfly counter keeps

the track of addresses, which have been used.

The address generation logic is almost same for

both Radix-2 FFT method and Split Radix FFT

method. Due to mixed radix property of split

radix algorithm, the location of twiddle factors is

irregular.

Butterfly architecture of Split Radix FFT

The main difference of butterfly

architecture of Split Radix FFT is that it involves

both trivial and nontrivial multiplications of

twiddle factors. Here the trivial multiplications

involve the twiddle factor ‘Wn’ and this

contributes to actual multiplications. Whereas

the nontrivial multiplication involves the twiddle

factor ‘j’ and this multiplication is just swapping

real and imaginary parts instead of an actual

multiplication as mentioned in [11]. This portion

of nontrivial multiplication leads to less number

of complex multiplications. The multipliers are

enabled whenever required; it is referred to as

multiplier gating technique. As Split Radix FFT

uses mixed radix property, the equations defined

above results in L shaped architecture. There is

totally five L shaped butterfly architecture for

four passes. In this approach 16-point FFT is

considered and the data word length is 32 bit.

Each input sequence comprised of real and

imaginary parts and the output sequence is also a

complex one.

Address generation logic

The address generation of twiddle factors

is an important aspect in the proposed technique.

Butterfly counter, pass counter, L Flag and J

Flag are fundamental units used in this logic.

The address generation is based on following

two assumptions using [12]. First, if one

butterfly unit is not within the L block in current

pass, it will be definitely in L block in next pass.

Second, if one butterfly unit need to be

multiplied with ‘j’ in current pass, then the same

butterfly unit should be multiplied with ‘Wn’ in

next pass. In previous design, the twiddle factors

need to be multiplied for each butterfly;

therefore the ROM banks are always enabled. In

the proposed design, the L block signal enables

the ROM banks only when the twiddle factors

required as shown in [13]. This is an added

advantage in this technique, which reduces

further power consumption.

It is important to mention that in

conventional implementations, the twiddle

factors are mandatory for each and every

butterfly unit, hence the ROM banks are enabled

at every time. But proposed technique shows that

the L Flag signal could be used as the enable

signal for the ROM memory, because if the

butterfly belongs to the L block, no

multiplication is required. This will reduces the

power consumption significantly. Because of

this reason the ROM banks are enabled

whenever required, our modified butterfly

architecture leads to lesser number of switching

activities and low dynamic power consumption.

This factors leads to efficient utilization of

memory banks.

Results and discussion

The conventional radix-2 FFT and SRFFT

algorithms were developed in verilog code. Both

are synthesized and simulated using Xilinx ISE

9.1i targeting for Spartran3E family with

XC3S500E device under the constraint of 100

MHz. The test bench waveforms were simulated

for 1-bit as well as 32-bit data word length for

both the cases, which are shown in fig. 5 and fig.

6 respectively. We can interpret the output

sequence as a combination of real and imaginary

parts from the simulation results. Compared with

the radix-2 addressing schemes, our addressing

method requires additional 2S−1-bit memory.

However, the SRFFT algorithm has the irregular

signal flow graph and makes the control of such

processors more difficult than the fixed-radix

ones. Although a software solution for the

indexing problem is given, the indexing scheme

is designed for the L butterfly structure, which is

not suitable for the hardware implementation due

to its uneven latencies. Some previous works use

lookup tables to solve the indexing problem. It is

obvious that the proposed algorithm requires

Praveena and Dhilipmohan, 2017. Design of low power split radix FFT processor with reduced computational complexity

©2017 The Authors. Published by G J Publications under the CC BY license. 242

significantly less memory than the lookup table approach.

Fig. 5. Output Waveform of 16-point Split Radix FFT (1 bit)

Fig. 6. Output waveform of 16-point Split Radix FFT (32 bit)

The power consumption is analyzed

using Xilinx Xpower Estimator, which

summarize the power consumption in terms of

total on chip power and junction temperature.

Total on-chip power is comprised of clock,

Logic, RAM and DSP units. The device

utilization summary of Xilinx ISE 9.1i provides

detailed description about the ratio of number of

used devices to number of available devices in

the design. Table 1 gives the comparison results

of previous and proposed technique in terms of

number of Slices, Flip Flops, BRAM and LUTs.

The multiplicative complexity is calculated using

the mathematical equations and number of

complex multiplications involved in the

computation. Table 2 compares the power

consumption, number of complex multiplications

and device utilization percentage of Existing

technique and proposed technique. From the

above table, we can conclude that our proposed

design achieves low power consumption, utilizes

the components efficiently and involves reduced

number of multiplications as compared to

existing technique. The reduction in these three

parameters makes our proposed design more

efficient than previous technique.

Praveena and Dhilipmohan, 2017. Design of low power split radix FFT processor with reduced computational complexity

©2017 The Authors. Published by G J Publications under the CC BY license. 243

Table 1. Comparison of each component for 16-

point computation

Components

Radix-2

FFT

(Existing

System)

Split Radix

FFT

(Proposed

System)

Flip Flops 2734 2576

LUTs 8278 8151

BRAMs 12 8

Table 2. Comparison of simulation results for

power, area and multiplicative complexity

Parameter

Radix-2

FFT

(Existing

System)

Split Radix

FFT

(Proposed

system)

Dynamic Power 31.4 mW 23.7 mW

Device

Utilization
80% 72%

Number of

complex

multiplications

32 18

Conclusions

In brief, the Split Radix FFT Processor is

designed to reduce the dynamic power

consumption at the cost of reduced hardware

resources. The static power consumption of

SRFFT remains the same as conventional

technique. In the proposed architecture the

number of non-trivial multiplications are

reduced, which in turn reduces the multiplicative

complexity of the algorithm. The switching

activities of the design are significantly reduced

due to its multiplier gating technique. All these

above factors makes the proposed design to

achieve over 18% lower power consumption

comparing to radix-2 architecture when

computing a complex valued transform.

Conflicts of interest

Authors declare no conflict of interest.

References

[1] Xiao X, Oruklu E, Saniie J. An efficient

FFT engine with reduced addressing logic.

IEEE Trans Circuits Syst II

2008:55(11):1149-1153.

[2] Yang CH, Yu TH, Markovic D. Power and

area minimization of reconfigurable FFT

processors. IEEE J Solid-State Circuits

2012: 47(3):757-768.

[3] Hsiao CF, Chen Y, Lee CY. A generalized

mixed-radix algorithm for memory-based

FFT processors. IEEE Trans Circuits Syst

II Exp. Briefs 2010:57(1):26-30.

[4] Cheng C, Parhi KK. Low-cost fast VLSI

algorithm for discrete Fourier transform.

IEEE Trans Circuits Syst I 2007:54(4):791-

806.

[5] Suto J, Oniga S, Hegyesi G. A simple fast

Fourier transformation algorithm to

microcontrollers and mini computers. 18th

International Conference on Intelligent

Engineering Systems, Tihany, 2014; pp. 61-

65.

[6] Johnson LG. Conflict free memory

addressing for dedicated FFT hardware.

IEEE Trans Circuits Syst II

1992:39(5):312-316.

[7] Chang YN. An efficient VLSI architecture

for normal I/O order FFT design. IEEE

Trans Circuits Syst II 2008:55(12):1234-

1238.

[8] Chen J, Hu J, Lee S, Sobelman GE.

Hardware efficient mixed radix-25/16/9

FFT for LTE systems. IEEE Trans Very

Large Scale Integr Syst 2015:23(2):221 -

229.

[9] Zhuo Q, Martin M. Low power Split Radix

FFT Processors using Radix-2 Butterfly

units. IEEE Trans Very Large Scale Integr

Syst 2016;24:3008-3012.

[10] Qian Z, Nasiri N, Segal O, Margala M.

FPGA implementation of low-power split-

radix FFT processors. Proceedings of the

24th International Conference on Field

Program Logic Applications, 2014.

[11] Kwong J, Goel M. A high performance

split-radix FFT with constant geometry

architecture. Proc Design, Autom Test Eur

Conf Exhibit, Dresden, Germany, 2012: pp.

1537-1542.

[12] Yeh WC, Jen CW. High-speed and low-

power split-radix FFT. IEEE Trans Signal

Process 2003:51(3):864-874.

[13] Duhamel P, Hollmann H. Split radix FFT

algorithm. Electron Lett 1984:20(1):14-16.

[14] Richards MA. On hardware

implementation of the split-radix FFT.

IEEE Trans Acoust Speech Signal Process

1988:36(10):1575-1581.

[15] García J, Michell JA, Burón A. VLSI

configurable delay commutator for a

pipeline split radix FFT architecture. IEEE

Trans Signnal Process 1999:47:3098-3107.
