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Abstract. The safety of autonomous cars is largely contingent upon their capacity to anticipate and evade possible 
accidents in real time.  The integration of Internet Things (IoT)-enabled sensors and communication systems allows cars 
to collect extensive environmental and operational data, facilitating informed decision-making.  This paper presents a 
predicted collision risk model based on Random Forest (RF) that employs multi-sensor IoT data, including vehicle 
speed, acceleration, braking habits, lane position, meteorological conditions, and nearby traffic density.  RF is chosen 
for its resilience, clarity, and capacity to manage high-dimensional, diverse datasets without succumbing to overfitting.  
The program evaluates dynamic driving situations to predict accident risks and facilitates preventive actions like 
controlled braking or lane adjustments.  Experimental findings demonstrate increased prediction accuracy with little 
computational lag, making it appropriate for real-time implementation.  The proposed approach augments Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) awareness, hence enhancing safety and efficiency in autonomous 
driving systems. 

Keywords: Autonomous Driving, Predictive Collision Risk, Random Forest, Intelligent Transportation Systems, IoT 
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INTRODUCTION 

The rapid progress of autonomous driving technology has converted the notion of intelligent transportation 
systems into a concrete reality. Contemporary autonomous cars are outfitted with a variety of IoT-enabled sensors, 
including LiDAR, radar, ultrasonic modules, and high-definition cameras, which incessantly collect extensive 
real-time environmental and vehicular data. This ongoing flow of information offers a unique potential for 
predictive analytics, especially in collision risk evaluation.  Precise and prompt forecasting of accident probability 
is essential for improving passenger safety, refining route planning, and enabling proactive vehicle control 
measures. Recent advancements in the integration of Machine Learning (ML) algorithms with IoT-generated 
vehicle data have shown considerable potential in modelling and alleviating accident hazards.  The RF method 
has garnered interest among many ML algorithms because of its durability, capacity to manage heterogeneous 
data, resistance to overfitting, and excellent predictive accuracy. Utilizing multi-sensor IoT datasets, RF models 
can discern nuanced patterns and interactions among dynamic driving variables such as vehicle speed, 
acceleration, braking force, lane position, weather conditions, and surrounding traffic behavior that frequently 
precede potential collision events. 

In contrast to conventional rule-based collision avoidance systems, predictive modelling provides the benefit 
of anticipatory decision-making.  This method enables autonomous cars to anticipate dangerous circumstances 
prior to their occurrence, enabling preemptive evasive actions or regulated slowing.  Moreover, IoT-based 
communication, specifically Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I), augments predictive 
capabilities by offering enhanced situational awareness that goes beyond the limitations of onboard sensor range. 
Developing a dependable predictive collision risk model involves overcoming many problems, including handling 
high-dimensional sensor data, providing low-latency processing for real-time decision-making, and sustaining 
accuracy over diverse environmental and traffic circumstances. This study focuses on the design and 
implementation of a predictive collision risk model based on RF, using IoT-generated autonomous driving data 
to attain elevated prediction accuracy, interpretability, and computing economy. The proposed method is 
anticipated to enhance the safety of autonomous driving via early danger identification and the facilitation of 
intelligent control measures.  This paper presents an assessment approach for assessing model performance across 
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many situations, delivering significant insights for academics, automotive engineers, and regulators in the field of 
autonomous vehicle safety. 

LITERATURE SURVEY 

Evaluating collision risk with moving cars in obscured areas is challenging due to the unavailability of vehicle 
motion data for perception. This work proposes a probabilistic method for assessing collision risk for prospective 
vehicle collisions in obscured areas. Probabilistic evaluation has three stages: modelling the field of view (FoV) 
for perception, predicting motion for probable collisions, and assessing collision risk probabilistically [1]. This 
work seeks to develop an integrated route planning and tracking controller that produces optimum control inputs 
to ensure a collision-free trajectory. This integrated approach is accomplished by combining model predictive 
control (MPC) with a potential field to assess collision risk. The target car is an autonomous electric system 
capable of directly regulating the traction and braking torques of automobiles. Wheel torque and steering input in 
automobiles are optimized by receding horizon optimization (RHO), resulting in stable and comfortable reference 
trajectories.  The optimization technique aims to minimize control inputs, tracking errors, and collision risk within 
a singular objective function [2]. 

The collaboration idea is introduced to assess the availability of space in the target lane for a lane shift within 
a brief future interval.  Before transitioning to the target lane, the ego vehicle must ascertain the cooperative nature 
of the object vehicle regarding the lane shift.  Vehicles are classified as cooperative drivers (CD) or non-
cooperative drivers (NCD) based on their relative longitudinal acceleration and collision-free time circumstances.  
When the object vehicle is classified as CD, the ego vehicle manoeuvres towards the target lane while remaining 
inside its original lane in preparation for the lane change. The ego vehicle must maintain its lateral position inside 
the designated lane until it is safe to execute a lane change [3]. A novel risk analysis methodology predicated on 
geographical distribution, integrating forecasting and simulation systems, has been validated via a specific case 
study.  The result emphasizes the future high-risk areas in terms of geographical distribution.  In contrast to 
conventional risk evaluations, this technique may forecast the future risk status of the examined region with more 
scientific precision, hence providing robust support for the adoption and implementation of ship collision risk 
management measures [4]. 

 Notwithstanding recent advancements in algorithms and technology, autonomous cars remain vulnerable to 
faults that may yield grave repercussions.  Consequently, there is a significant requirement for appropriate risk 
monitoring and mitigation strategies for autonomous driving systems. To address this problem, many 
specifications and standards have been established. A theoretical framework for addressing dangers associated 
with autonomous vehicles has seldom been proposed. This paper proposes a risk modelling approach influenced 
by control theory concepts and presents a Model Predictive Control (MPC) Framework to address hazards broadly 
[5]. This study presents an integrated risk map designed to identify the safest areas by using predictive data on 
adjacent cars, accident severity in autonomous vehicles, and human injury statistics.  The integrated risk map 
consists of two layers: a risk prediction grid map derived from relative information about adjacent cars and a 
severity grid map based on collision severity and human injury data in collision zones.  The two layers are 
amalgamated to compute an integrated risk value, therefore augmenting passenger safety by factoring in possible 
damage during the generation of a collision avoidance trajectory [6]. 

A stochastic risk measure is included as a restriction in both robust and stochastic nonlinear model predictive 
path-following controllers (RMPC and SMPC, respectively). Evaluate the vehicle's performance in terms of safety 
and path-following capabilities while using SMPC and RMPC. An example of automated driving implementation 
is shown, illustrating the impact of varying risk tolerances and the escalation of uncertainty in predictions about 
other road users in both scenarios.  The RMPC is much more conservative than the SMPC and exhibits larger 
following mistakes relative to references [7]. A novel methodology for estimating ship-ship collision probabilities 
using the Cross-Entropy (CE) technique is presented, which may be seen as an adaptive significance sampler.  It 
offers the benefit of achieving low variance estimates for minimal collision probabilities, which is often the case 
in genuine situations.  Additionally, a risk-based Collision Avoidance (COLAV) system that incorporates both 
obstacle kinematic uncertainty and intention uncertainty is introduced, referred to as the Probabilistic Scenario-
Based Model Predictive Control (PSB-MPC) [8]. A risk management method for crowd control based on collision 
analysis.  The technique overcomes the shortcomings of current approaches by recognizing real-time crowd 
density and anticipating possible collision hazards in congested regions.  The methodology produces crowd grid 
maps, employs crowd grouping algorithms, and forecasts collision spots and timings using domain-specific data.  
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The risk indicators generated are visualized to signal possible risks, hence assuring effective crowd control and 
safety.  The tested approach via simulations showcases its capacity to forecast dangers in high-density situations, 
making it an invaluable resource for event organizers and public safety organizations [9]. 

This project combined the design of a formation trajectory planner and a tracking controller inside a model 
predictive control framework, including a collision detection mechanism.  Upon detecting collision risk, the UAV 
executed trajectory optimization to formulate collision-free paths, while the tracking controller ensured adherence 
to the intended trajectory.  Consequently, the multi-UAV system exhibited trajectory tracking and real-time 
collision avoidance capabilities [10].  This research introduces an innovative self-collision avoidance (SCA) 
strategy for whole-body model predictive control (WB-MPC).  Given that WB-MPC addresses a large-scale 
optimization issue that expands with the target robot's degrees of freedom, it is imperative to calculate the 
derivatives of the dynamics and cost functions as swiftly as feasible.  Integrating SCA with detailed collision 
bodies into WB-MPC is computationally intensive, making it a tough endeavor.  A potential solution to this 
unresolved problem is to approximate the robot model using basic forms; nevertheless, this approach results in 
the accumulation of modelling flaws [11]. 

 An effective method for reducing the probability of collision using arbitrary predictive distributions of 
dynamic barriers.  MMD-OPT is based on embedding distributions inside Reproducing Kernel Hilbert Space 
(RKHS) and the corresponding Maximum Mean Discrepancy (MMD). These two notions may be used to provide 
a sample-efficient substitute for estimating collision risk.  To assess the efficacy of MMD-OPT on both synthetic 
and empirical datasets.  Using the MMD-based collision risk surrogate results in safer trajectories at low sample 
sizes compared to widely used methods based on Conditional Value at Risk (CVaR) [12]. A dual-tier control 
method using Model Predictive Control (MPC) and Scenario-Based Model Predictive Control (SB-MPC) for 
trajectory adherence and collision prevention.  The algorithm proposes cohesive techniques for managing riparian 
zones, fixed impediments, and moving obstacles [13].  An extensive integration from perception to navigation 
inside a flexible collision avoidance framework intended to function under these limitations.  The method is based 
on an innovative Predictive Collision Detector, which is proposed as an interface between cutting-edge grid-based 
perception and sampling-based planners.  In contrast to most other methodologies, the functions only operate on 
fundamental space occupancy and eschew the notion of objects; therefore, they encapsulate the complexity and 
adaptability of contemporary occupancy grid perception [14]. A heuristic approach for choosing interacting agents 
based on the assessment of collision risk.  The proposed use of time-to-collision and the approach direction angle 
of two agents to encode the interaction impact between potentially colliding agents and a target pedestrian.  This 
is accomplished by using an innovative polar collision grid map [15]. 

PROPOSED SYSTEM 

The proposed system intends to create a predictive collision risk model based on RF algorithms, using real-time 
IoT data from autonomous cars to anticipate probable accident situations and provide proactive safety interventions.  
The system incorporates several levels of sensing, data preprocessing, feature engineering, ML, and communication 
to guarantee dependable, low-latency decision-making under different driving situations. The solution is based on 
an IoT-enabled sensor network integrated into the autonomous vehicle.  This network comprises LiDAR, radar, 
ultrasonic sensors, and high-definition cameras, which together acquire a comprehensive array of environmental 
and vehicular data.  The parameters include vehicle velocity, acceleration, deceleration force, steering angle, lane 
positioning, road curvature, proximity to surrounding objects, traffic density, meteorological conditions, and 
illumination levels.  The system integrates onboard sensors with Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication channels, facilitating the exchange of situational data outside the line of sight. 
The data obtained from these sources is subjected to preprocessing to guarantee quality and consistency.  The 
preprocessing procedures include noise reduction using filtering methods, normalization of numerical values, 
management of missing data, and synchronization of inputs from sensors with varying sampling rates.  Outlier 
identification is conducted to remove aberrant data that might compromise the accuracy of forecasts. After 
preprocessing, feature extraction and selection are conducted to ascertain the most pertinent indications of probable 
collision risk.  Rapid deceleration, lane departure, reduced inter-vehicle distance, and anomalous trajectory patterns 
are prioritized.  The RF approach is used for its capacity to effectively handle large-scale, high-dimensional datasets 
while preserving interpretability.  The ensemble architecture, consisting of several decision trees, improves model 
resilience and mitigates the likelihood of overfitting. Figure 1 shows the processes of sensor data acquisition, 
preprocessing, RF analysis, risk assessment, and proactive measures for ensuring autonomous vehicle safety. 
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FIGURE 1. Proposed System Architecture for Predictive Collision Risk Modeling 

The model is trained using historical datasets of autonomous driving that include both collision and non-
collision incidents.  These datasets are augmented with sensor measurements, vehicle conditions, and contextual 
variables.  The training method includes adjusting hyperparameters, including the number of trees, maximum tree 
depth, and minimum sample split, to get optimum predictive performance.  Throughout training, the model acquires 
intricate associations between input characteristics and collision results, allowing it to generalize well to unfamiliar 
situations. During the prediction phase, real-time data from vehicle sensors and communication channels are input 
into the trained RF model.  The model generates a collision risk score—a probabilistic metric that signifies the 
probability of a collision occurring within a certain time frame.  This score is perpetually updated, guaranteeing the 
vehicle retains an accurate comprehension of its current danger environment. Figure 2 shows many decision trees 
analysing input features, combining votes via hard or soft voting to get the final forecast. 

 

FIGURE 2. Workflow of RF Classification  

Should the risk score surpass a certain safety level, the system activates proactive intervention measures.  These 
interventions may include automatic braking, modifications to adaptive cruise control, emergency steering, or 
driver notifications in semi-autonomous modes.  The interventions are intended to be timely and contextually aware, 
avoiding superfluous actions in non-critical scenarios while immediately addressing actual threats. The proposed 
approach connects with cloud-based analytics systems for sustained learning and model enhancement.  Operational 
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data from several cars is consolidated in the cloud, enabling the RF model to be frequently retrained with updated 
data to adjust to changing traffic patterns, ambient conditions, and sensor technology.  This perpetual learning cycle 
guarantees the model's relevance and precision throughout time. An essential novelty in the proposed system is its 
capacity to integrate local real-time processing with distributed IoT-based awareness. Critical collision risk 
evaluations are conducted locally on the vehicle's onboard processing unit to reduce latency; however, additional 
risk knowledge from proximate cars and infrastructure may improve decision-making.  For example, if a car in 
front identifies an abrupt threat, this data may be sent using V2V communication, enabling the subsequent vehicle's 
system to proactively modify its risk assessment. 

The system design is modular, facilitating scalability and seamless interface with other autonomous driving 
subsystems, including navigation, route planning, and traffic management.  Security protocols, such as encrypted 
communication routes and secure firmware upgrades, are established to safeguard the system from cyber-attacks 
that may jeopardize safety. The proposed system seeks to markedly diminish the probability of crashes in 
autonomous driving contexts by using the advantages of RF ML, IoT-based sensing and communication, and real-
time safety interventions.  It tackles the existing shortcomings of conventional rule-based collision avoidance 
systems by providing predictive, context-aware risk evaluation and fast reaction functionalities. The proposed 
technology promotes instant accident avoidance and supports the overarching concept of intelligent transportation 
systems, whereby linked autonomous cars collaborate to assure safety, efficiency, and dependability on the road.  
The model grows via ongoing data-driven learning, adapting to traffic patterns and environmental changes, 
therefore providing a sustainable solution for future autonomous transportation. 

RESULTS AND DISCUSSIONS 

The proposed predictive collision risk model, based on RF, has been implemented and assessed using an IoT-
driven dataset for autonomous driving, which includes multi-sensor data, environmental factors, and annotated 
collision risk incidents.  The dataset included vehicle velocity, acceleration, brake force, lane deviation, inter-
vehicle spacing, meteorological conditions, and traffic density.  Seventy percent of the dataset was designated for 
training, while the remaining thirty percent was utilized for testing, ensuring an impartial assessment of the 
model's prediction skills. The model attained an accuracy of 96.4%, with a precision of 95.8%, a recall of 96.9%, 
and an F1-score of 96.3%.  The findings demonstrate that the model is very dependable in detecting high-risk 
scenarios while minimizing both false positives and false negatives.   

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) attained a value of 0.985, indicating 
an exceptional capacity to distinguish between collision-risk and safe-driving conditions. The model demonstrated 
an average prediction time of 12 milliseconds per instance, affirming its appropriateness for real-time use in 
autonomous cars.  Feature selection enhanced efficiency by decreasing the input variables from 25 to the 15 most 
significant predictors, while maintaining accuracy.  An examination of feature significance indicated that inter-
vehicle distance, braking force, and acceleration variation were the predominant predictors.  Weather-related 
variables, including visibility and road surface conditions, significantly contributed to improving forecast 
accuracy, underscoring the need for contextual awareness. Scenario-based testing further corroborated the 
system's efficacy.  In simulations of quick braking by a leading vehicle, abrupt lane changes in congested traffic, 
and reduced vision due to inclement weather, the model accurately forecasted increased accident risks far ahead 
of time.  This early identification enabled prompt responses, including automatic braking, modifications to 
adaptive cruise control, and evasive steering manoeuvres. The findings indicate that the proposed system provides 
precise, low-latency, and context-sensitive risk estimates, establishing it as a reliable and scalable option for 
improving the safety of autonomous driving systems. Table 1 shows example sensor readings with their associated 
expected collision risk scores and categorized risk categories produced by the RF algorithm. 

                                          TABLE I. Sample IOT Sensor Data and Predicted Collision Risk Levels 

Speed 
(km/h) 

Acceleration 
(m/s²) 

Braking 
Force 

(N) 

Lane 
Deviation 

(m) 

Inter-
Vehicle 

Distance 
(m) 

Visibility 
(m) 

Road 
Surface 

Condition 

Traffic 
Density 

(veh/km) 

Predicted 
Collision 

Risk Score 

Risk 
Level 

72 -2.5 3500 0.12 8.5 200 Wet 45 0.87 High 
58 0.5 500 0.05 15.2 350 Dry 30 0.32 Low 
90 -3.0 4200 0.18 6.0 150 Wet 60 0.93 High 
65 1.2 800 0.08 20.5 400 Dry 25 0.28 Low 
80 -1.5 3000 0.15 10.0 250 Dry 50 0.65 Medium 
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Figure 3 shows the reduction of accident risk as inter-vehicle distance grows, highlighting acceptable following 
lengths in autonomous driving. 

 

                                            FIGURE 3. Collision Risk Variation with Inter-Vehicle Distance 

Figure 4 shows the feature importance of the RF model, highlighting distance, braking force, and acceleration 
variation as primary predictors of collision probability. 

 

                                     FIGURE 4. Relative Importance of Features in Collision Risk Prediction 

The key challenges of this system are managing significant volumes of high-dimensional IoT sensor data while 
ensuring low-latency, real-time processing for safety-critical decisions. Ensuring model accuracy amidst 
fluctuating weather, traffic, and road conditions is challenging owing to data unpredictability. Safely integrating 
V2V and V2I communications without latency challenges is an additional challenge. Furthermore, ensuring 
resilience against sensor malfunctions, data loss, or cyber intrusions, while facilitating scalable updates for 
continuous learning, presents considerable technological and operational difficulties in the domain of autonomous 
car safety applications. 

CONCLUSIONS 

This study presents an expected collision risk framework based on RF techniques that effectively utilize IoT 
sensor data to improve the safety of self-driving cars.  By amalgamating multi-sensor inputs, including LiDAR, 
radar, cameras, and environmental data, with V2V and V2I communications, the system delivers a real-time, 
context-sensitive evaluation of collision risk.  The model's exceptional accuracy, swift processing speed, and 
resilience to data unpredictability indicate its appropriateness for practical autonomous driving applications.  
Analysis of the features showed that inter-vehicle distance, braking force, and acceleration variation are significant 
predictors, consistent with established safety parameters in transportation systems.  Scenario-based testing further 
corroborated the model's capacity to provide early warnings, allowing proactive measures such as autonomous 
braking or evasive steering. Despite ongoing issues related to scalability, communication latency, and 
environmental adaptation, the proposed methodology represents a substantial advancement in ensuring safer 
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autonomous transportation. Continuous learning from consolidated operational data may enhance accuracy in 
forecasting, furthering the long-term objective of intelligent, linked transportation systems.  
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