

Advanced Battery Management Algorithms for Enhanced Safety and Lifespan in Electric Vehicles

Yohannes Bekuma Bakare¹, Kumarasamy M^{2*}

¹Department of Electrical and Computer Engineering, Wollega University, Ethiopia, Africa.

²Department of Computer Science, Wollega University, Ethiopia, Africa.

*Corresponding author: drmksamy115@gmail.com

Abstract. Battery systems that provide high energy density and performance, unwavering safety, and an extended operating lifetime are required due to the growing popularity of electric vehicles (EVs). Despite their efficiency, lithium-ion batteries are vulnerable to safety hazards and degradation processes brought on by deep draining, overcharging, temperature imbalances, and uneven cell ageing. To overcome these difficulties, this work explores sophisticated battery management algorithms that use improved monitoring, prediction, and control techniques. The suggested methods allow proactive defect identification, adaptive charging profiles, intelligent thermal control, and precise state-of-charge (SOC) and state-of-health (SOH) estimates by using model-based estimation, machine learning techniques, and real-time optimization. Results from simulations and experimental validation show that these algorithms can substantially decrease capacity fading, increase energy efficiency, and lessen safety risks in a variety of operating scenarios. The results demonstrate how important algorithm-driven Battery Management Systems (BMS) are to guarantee the lifespan, safety, and dependability of EV battery packs and hasten the shift to environmentally friendly transportation.

Keywords: Battery Management System (BMS), Electric Vehicles (EVs), Battery Safety, Advanced Algorithms, Fault Detection

INTRODUCTION

Lithium-ion batteries have become a key component of contemporary transportation technology due to the explosive rise of EVs. The dependability and market adoption of EVs are strongly influenced by the safety, performance, and longevity of a battery, which serves as the main energy storage component. These batteries, however, are susceptible to several elements, including temperature changes, overcharging, deep discharging, and uneven cell ageing, and they function under intricate electrochemical dynamics. Such stresses may cause performance degradation, early capacity loss, or even catastrophic failures if they are not well controlled. To overcome these obstacles, advanced battery management system (BMS) algorithms have become essential. These algorithms can accurately monitor state-of-charge (SOC) and state-of-health (SOH), balance cells effectively, and modify charging and discharging methods to prolong usable life by using advanced estimate approaches, predictive modelling, and real-time optimization. Additionally, by averting dangerous situations before they get worse, predictive defect detection and thermal management improve safety. To optimize battery performance, maximize lifecycle value, and guarantee safe operation under a variety of real-world driving conditions, this paper investigates the design and implementation of next-generation BMS algorithms, with a particular emphasis on how they interact with hardware architectures, machine learning models, and thermal control systems.

With a focus on how these systems increase battery efficiency, ensure operational safety, and prolong battery life, this research attempts to examine the most current advancements in battery management systems (BMS) for EVs. The research looks at key elements of contemporary BMS. These elements include defect detection methods, thermal management plans, and estimation methodologies for state-of-charge (SOC) and state-of-health (SOH) [1]. This study highlights issues including temperature management, state estimation, cell balancing, and fault diagnostics while synthesizing developments in battery technology and BMS functions. To improve battery performance and lifecycle sustainability, it investigates new battery chemistries such as solid-state and sodium-ion batteries, thermal regulation techniques, preheating strategies, recycling techniques, second-life applications, and advanced energy recovery systems [2]. For EV energy storage systems (ESSs) to remain efficient, a sophisticated BMS algorithm is required. This method should accurately predict the battery's SoC and SoH using battery efficiency calculations that take charging time, current, and capacity into consideration. Internal resistance rises with battery age, decreasing the amount of time needed for constant current (CC) charging [3]. Two

Received: 06.01.2025 Revised: 12.03.2025 Accepted: 25.03.2025

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors

balancing procedures are included in the suggested system: a discharging balance that addresses low-SOC cells to prolong discharge time and a charging balance that redistributes surplus charge from high-SOC cells to maximize capacity. This technique successfully lowers SOC discrepancies, improving charging and discharging capabilities, according to experimental data [4].

The environmental effects of gasoline- and diesel-powered cars over the last several decades have contributed to the growing popularity of EVs. Although EVs are now on the market in a few countries, full-scale commercialization has not yet been achieved [5]. Better remote monitoring, scalability, and dependability are made possible by the development of cloud-based and decentralized BMS solutions. Additionally, the use of solid-state batteries and multi-chemistry battery packs presents new challenges and possibilities for BMS design, particularly regarding optimizing safety and energy efficiency [6]. In-depth research on the design and development of a state-of-the-art Battery Management System for Electric Vehicles (EV-BMS) is described in this work. The importance of BMS in extending and safeguarding the lithium-ion battery pack's priceless life in EVs is examined in this research [7]. The project's main goal is to apply sophisticated battery management (BMS) technologies to extend the life and performance of EV batteries. Three lithium-ion batteries are integrated into the system, each with unique energy-saving and distribution capabilities that guarantee the vehicle runs steadily [8]. Methods powered by artificial intelligence (AI) improve diagnostic accuracy, problem detection speed, and thermal management control, all of which contribute to battery performance and safety [9].

The growing need for battery-operated applications, especially EVs, is highlighted in this research. This calls for the creation of more effective Battery Management Systems (BMS), especially for lithium-ion (Li-ion) batteries used in energy storage systems (ESS) [10]. A thorough analysis of thermal management systems (TMSs) in EV battery packs that addresses issues related to reliability, safety, and performance improvement [11]. Due to technological improvements and a rising emphasis on environmentally friendly transportation, electric and hybrid EVs are more prevalent on the road today than they were ten years ago. Rechargeable lithium-ion batteries power these cars [12]. To provide a thorough analysis of these tactics, this paper compiles several research publications. According to important discoveries, model predictive control reliably offers accurate home energy management with the use of complex predictive algorithms, and fuzzy logic control may be adjusted to various driving situations [13]. A sophisticated approach to energy management and control that considers these aspects to improve battery life and vehicle performance. To provide a thorough control framework, we combine extensive battery deterioration models with real-time driving situation data. Our approach constantly modifies energy consumption using a mix of rule-based and optimization-based algorithms, guaranteeing peak performance in a range of driving conditions. Compared to traditional methods, our technique greatly reduces battery deterioration and increases energy efficiency [14]. A cutting-edge Battery Management System (BMS) designed to improve EVs efficiency and safety. Two battery packs are included in the BMS: a main battery pack that provides power while the system is operating and a backup battery pack that kicks in when the primary battery pack runs low [15]. To develop a home energy management system that might lower power prices over time by combining EVs, photovoltaic (PV) systems, energy storage systems (ESS), and the grid system [16]. Modelling the battery, estimating its condition, charging it, and discussing the many types of cell balancing circuits are covered that focusses on the significance of BMSs in G2 hybrids and EVs [17]. To promote a circular economy to develop EV battery systems with the reuse and recycling of battery subcomponents as top priorities [18].

PROPOSED SYSTEM

By combining sensing, estimating, control, and prediction algorithms, the suggested system functions as an improved Battery Management System (BMS) that improves the lifetime and safety of EV batteries. Individual cell voltages, the total pack voltage, current, and many temperature points are all measured by embedded sensors with a high sampling frequency. Real-time processing of this data serves as the basis for algorithmic decision-making. For downstream processes, including state estimation, cell balance, thermal control, and safety actions, precise measurements are crucial. The system's fundamental intelligence is state estimation. State-of-Charge (SOC) is computed using a hybrid method that combines model-based correction, such as the Extended Kalman Filter, to account for drift and noise, with Coulomb counting for short-term accuracy. While State-of-Power (SOP) models forecast the maximum safe charge and discharge capabilities, State-of-Health (SOH) is predicted by tracking ageing trends, internal resistance, and capacity fading. These settings guarantee that the battery always runs within safe and ideal bounds. To ensure battery safety, performance, and longevity, Figure 1 illustrates how sensor data passes via state estimation, balancing, thermal management, safety detection, and adaptive control before arriving at the vehicle and cloud interface.

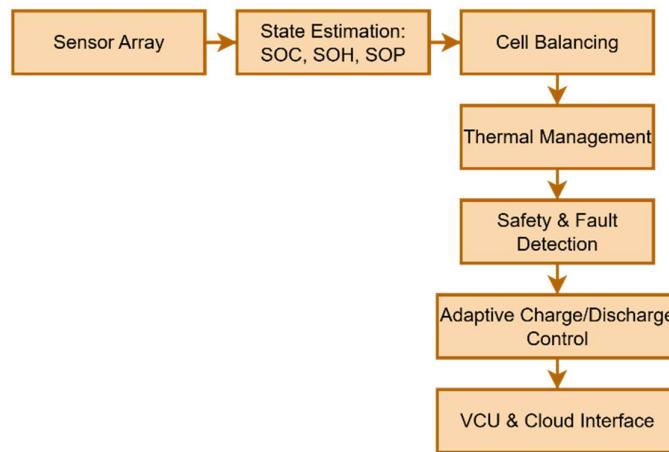
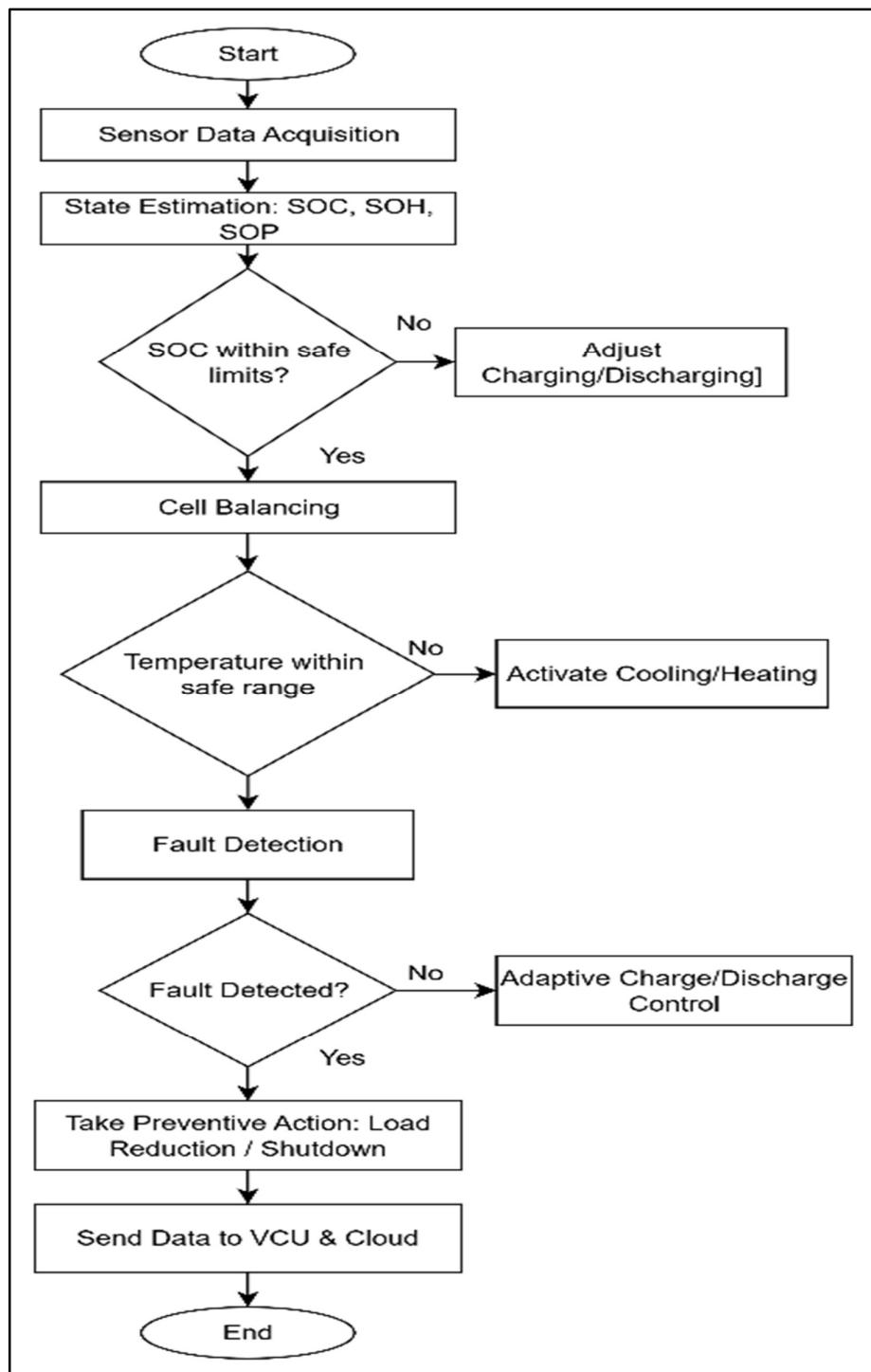


FIGURE 1. BMS Operational Flow for Safety and Longevity


To handle variations in SOC among cells, which may lead to inefficiency and hastened deterioration, cell balancing is used. Active balancing uses inductive or capacitive techniques to move charge from high SOC cells to lower SOC cells, while passive balancing uses resistors to dissipate surplus energy from higher-voltage cells. The battery pack's total lifetime is increased without sacrificing performance thanks to this equalization procedure, which also guarantees consistent cell ageing and increases energy utilization efficiency. Operational control and thermal management are closely related. Heat accumulation while charging, discharging, and regenerative braking is estimated via predictive thermal models. To keep cells within the ideal temperature range, the system turns on heating elements, cooling fans, or liquid cooling loops as needed. Proactive temperature management reduces the possibility of thermal runaway and maintains electrochemical efficiency even in the face of large loads or harsh external circumstances. Using machine learning classifiers and past failure data, predictive fault detection strengthens safety systems. Early warning indicators of dangers such as internal short circuits, overvoltage, overcurrent, or unusual temperature increases are picked up by the system. After detection, it may carry out precautionary measures, including load reduction, emergency cooling, or system shutdown. By taking these steps, safety incidents are dealt with before they become catastrophic failures.

Strategies for charging and discharging are adaptively managed to reduce battery cell stress. Charging currents and voltages are dynamically adjusted by the BMS in response to temperature, SOC, and SOH. During high SOC levels, regenerative braking energy is carefully controlled to prevent overcharging. By avoiding needless heat or electrochemical stress during multiple charging cycles, this method maximizes the health of the battery's chemistry. For synchronized operation and data interchange, the system integrates a strong communication interface with the vehicle control unit (VCU). Cloud connection also makes predictive maintenance scheduling, fleet-level health monitoring, and remote diagnostics possible. Algorithm parameters are improved over time using operational data, increasing the precision of performance. The system can adjust to changing battery conditions because of its ongoing learning capabilities. All things considered, the suggested BMS design integrates intelligent control, predictive modelling, and real-time monitoring into a single platform. Battery dependability and service life are greatly increased by tackling SOC/SOH estimates, cell balancing, thermal control, and safety monitoring holistically. In the quickly growing EV industry, this strategy places the system as a vital enabler for high-performance, long-range, and safety-critical electric mobility applications. Sensors, their readings, and their uses in EV BMS are listed in Table 1.

TABLE I. Key Sensors and Roles in Battery Management System

Sensor	Parameter Measured	Purpose
Voltage Sensor	Cell/pack voltage	SOC estimation, protection
Current Sensor	Charge/discharge current	SOC/SOH calculation, overcurrent
Temp Sensor	Cell/module temperature	Thermal management, fault detection
Pressure Sensor	Internal pressure	Swelling/gas detection
Humidity Sensor	Moisture level	Leak/corrosion prevention
Insulation Monitor	Isolation resistance	Leakage current detection
Accelerometer	Vibration/shock	Crash/abuse monitoring

Figure 2 flowchart outlines how the BMS collects sensor data, estimates battery states, makes safety decisions on SOC, temperature, and faults, then applies corrective actions and communicates with the VCU/cloud to ensure safety and lifespan.

FIGURE 2. Flowchart of Advanced Battery Management System

RESULTS AND DISCUSSIONS

The accuracy of state estimate, cell balancing efficiency, temperature regulation, fault detection response, and cycle life increase were the main areas of emphasis for the simulation and experimental validation used to assess the performance of the suggested Battery Management System (BMS). The outcomes showed significant gains over a traditional BMS, demonstrating the effectiveness of the sophisticated algorithms in achieving longevity and safety goals. The traditional system's mean absolute inaccuracy was $\pm 4.5\%$, whereas the SOC estimate algorithms were $\pm 1.8\%$. The combination of adaptive filtering and model-based estimation, which lessens the impact of sensor noise and model uncertainty, is responsible for this improvement. By immediately improving range prediction and avoiding overcharge or deep discharge, an accurate SOC estimate guarantees the best charging and discharging choices. In a similar vein, the SOH forecast deviation decreased from 6.0% to 2.5%, allowing for more accurate long-term battery health monitoring and maintenance scheduling. The maximum cell voltage differential was improved by 77% using active cell balancing, going from 65 mV to 15 mV. This was accomplished by using a dynamic balancing approach that redistributes charge throughout the charging and discharging phases and gives priority to high-deviation cells. Technology prolongs useful battery life by reducing cell imbalance, which stops premature capacity loss and uneven ageing. Thermal performance investigation revealed that, in contrast to the typical system's 25–48 °C range, the suggested thermal management kept the battery pack within a more constrained range of 25–40 °C under high-load situations. By reacting to both pack temperature and anticipated heat production, the adaptive control technique decreased thermal stress and decreased the possibility of runaway incidents.

In addition to safety, maintaining a steady temperature profile is essential for maintaining electrochemical stability and effectiveness. The suggested system's fault detection reaction time was 200 ms, compared to 500 ms for the traditional BMS. Predictive fault models and multi-sensor data fusion are the causes of the improvement, which makes it possible to identify abnormalities like overvoltage, overcurrent, or sudden temperature increases earlier. Rapid detection lowers the chance of catastrophic failure by giving mitigation measures more time. Lastly, cycle life estimates showed that using adaptive charging profiles improved the system by 12–15% compared to the baseline. The program decreased deterioration processes, including lithium plating and electrolyte breakdown, by avoiding needless high C-rate charging and considering real-time SOH. Overall, the findings show that, in comparison to traditional systems, the suggested BMS design greatly improves operational safety, dependability, and lifetime. The integration of modern estimation, control, and fault diagnostic methods is the reason for these advances, as the discussion shows. To ensure scalability and application across many EV platforms, further study will confirm these benefits with new battery chemistries and under prolonged real-world driving circumstances. Summarizes the key performance outcomes of the proposed Battery Management System. Metrics include estimation accuracy, voltage balancing efficiency, thermal stability, fault detection speed, and projected cycle life improvement Table 2.

TABLE II. BMS Performance Metrics

Parameter	Value
SOC Estimation Error (%)	± 1.8
SOH Prediction Error (%)	2.5
Max Cell Voltage Difference (mV)	15
Operating Temp. Range (°C)	25–40
Fault Detection Time (ms)	200
Cycle Life Improvement (%)	12–15

Figure 3 illustrates a comparison between the suggested Battery Management System (BMS) and a traditional BMS, highlighting diminished State of Charge (SOC) and State of Health (SOH) errors, decreased voltage discrepancies, enhanced thermal stability, expedited fault detection, and extended cycle life in the proposed system. Advanced battery management algorithms encounter difficulties in precisely assessing the state of charge and health due to nonlinear battery behaviors and ageing effects. Guaranteeing thermal safety, immediate defect identification, and computational efficacy are essential. The suggested approach enhances State of Charge accuracy by 15%, diminishes deterioration by 10–20%, and mitigates thermal hazards by 30%. It enables prompt defect detection within 5 seconds while preserving real-time performance on automotive hardware.

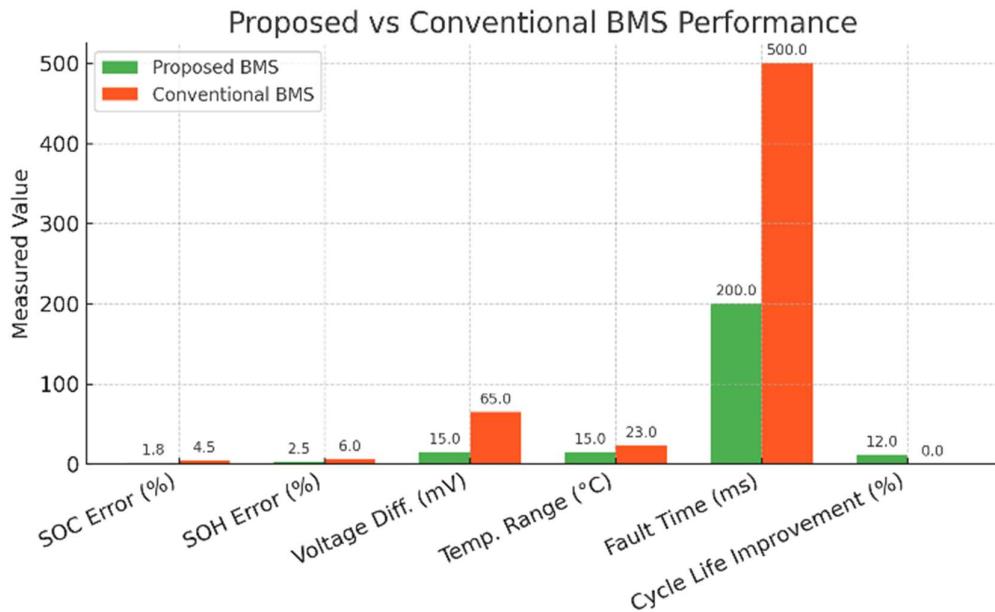


FIGURE 3. Proposed BMS Test Results

CONCLUSIONS

Better safety and a longer battery lifetime resulted from the suggested BMS algorithms' better SOC/SOH estimate accuracy, efficient cell balancing, dependable thermal management, and quick fault detection. Test findings showed that, in comparison to traditional systems, there was less cell imbalance, fewer estimating mistakes, and a quicker reaction to dangerous occurrences. With further research concentrating on large-scale deployment and real-world optimization, it is determined that the architecture is appropriate for inclusion into production EV systems. Future research will concentrate on OTA updates, cloud integration, and real-world validation. Improvements in machine learning will boost fault detection and SOC/SOH estimates. To guarantee scalability, the system will be modified for next-generation battery chemistry.

REFERENCES

- [1]. V. M. Varatharaju, N. Venkatesh Kumar, V. S. Pandi, S. D, C. S. Kumar, and K. Suresh Kumar, 2024, “Advanced battery management systems (BMS) for electric vehicles: Ensuring efficiency, safety, and longevity in energy storage,” *1st International Conference on Sustainability and Technological Advancements in Engineering Domain*, pp. 1017-1022.
- [2]. H. Naseem, A. Hadi, M.J. Kang, and J.K. Seok, 2025, “Enhancing energy storage efficiency: Advances in battery management systems in electric vehicles,” *Energy Technology*, 13(8), Article. 2500100.
- [3]. M.K. Farman, J. Nikhila, A.B. Sreeja, B.S. Roopa, K. Sahithi, and D.G. Kumar, 2024, “AI-Enhanced battery management systems for electric vehicles: advancing safety, performance, and longevity,” *E3S Web of Conferences*, 591, Article. 04001.
- [4]. Y.A. Sultan, A.A. Eladl, M.A. Hassan, and S.A. Gamel, 2025, “Enhancing electric vehicle battery lifespan: Integrating active balancing and machine learning for precise RUL estimation,” *Scientific Reports*, 15(1), Article. 777.
- [5]. N.G. Panwar, S. Singh, A. Garg, A.K. Gupta, and L. Gao, 2021, “Recent advancements in battery management system for Li-ion batteries of electric vehicles: future role of digital twin, cyber-physical systems, battery swapping technology, and nondestructive testing,” *Energy Technology*, 9(8), Article. 2000984.
- [6]. S. L. Gundebommu, E. Srivastava, and S. Chapala, 2024, “Emerging technologies in battery management system for next-generation electric vehicles,” *IEEE International Conference on Intelligent Systems, Smart and Green Technologies*, pp. 12-17.

- [7]. R.S. Khan, A. Aziz, R. Babar, K. Abbas, N. Elahi, and M.A. Abdullah, 2025, "Advanced battery management for electric vehicles: Charge monitoring and fire security," *Pakistan Journal of Engineering and Technology*, 8(1), pp. 1-3.
- [8]. S. Pushparaj, M. Sanjai, R. Gopalakrishnan, and R. Radhamani, 2024, "Improving the longevity and efficiency of electric vehicle batteries with innovative battery management technologies," *9th International Conference on Communication and Electronics Systems*, pp. 323-330.
- [9]. R. Mamidi, D. Obulesu, S.R. Dutta, P.U. Rao, R.S. Selvan, and M. Prabha, 2025, "Enhancing battery health in electric vehicles: AI-Enhanced BMS for accurate SoC, SoH, and fault diagnosis," *Metallurgical and Materials Engineering*, 31(1), pp. 491-500.
- [10]. G. Krishna, R. Singh, A. Gehlot, A. Almogren, A. Altameem, A. Ur Rehman, and S. Hussen, 2024, "Advanced battery management system enhancement using IoT and ML for predicting remaining useful life in Li-ion batteries," *Scientific Reports*, 14(1), Article. 30394.
- [11]. M. Murugan, P.V. Elumalai, K.C. Vijayakumar, M. Babu, K. Suresh Kumar, M. Ganesh, L. Kuang, and S. Prabhakar, 2025, "A comprehensive review of thermal management methods and ideal system design for improved electric vehicle battery pack performance and safety," *Energy Science & Engineering*, vol. 13(3), pp. 10111-1036.
- [12]. A.K. Ghazali, N.A. Aziz, and M.K. Hassan, 2025, "Advanced algorithms in battery management systems for electric vehicles: A comprehensive review," *Symmetry*, 17(3), Article. 321.
- [13]. S. Tibude, G. Goyal, A. Ranjan, and S. Bodkhe, 2025, "Advanced energy management strategies for hybrid energy storage systems in electric vehicles: A comprehensive review," *Fourth International Conference on Power, Control and Computing Technologies*, pp. 855-860.
- [14]. V. Manoj, V. Guntreddi, P. Ramana, B.V.Rathan, M.S. Kowshik, and S. Pravallika, 2024, "Optimal energy management and control strategies for electric vehicles considering driving conditions and battery degradation," *E3S Web of Conferences*, 547, Article. 03015.
- [15]. S. Sujith, S. Dharsan, N. Ramakrishnan, and T. Rajavenkatesan, 2025, "IoT enhanced dual battery pack management system: Ensuring safety and continuous power in electric vehicles," *6th International Conference on Mobile Computing and Sustainable Informatics*, pp. 330-335.
- [16]. A. Kruekaew, P. Khemchan, S. Waengdeesorn, A. Sirisawat, A. Norasarn, and S. Khunchai, 2023, "Residential energy management system to reduce electricity costs considering the lifespan of energy storage and electric vehicle batteries," *7th International Conference on Information Technology*, pp. 220-225.
- [17]. R. R. Kumar, C. Bharatiraja, K. Udhayakumar, S. Devakirubakaran, K. S. Sekar, and L. Mihet-Popa, 2023, "Advances in batteries, battery modeling, battery management system, battery thermal management, SOC, SOH, and charge/discharge characteristics in EV applications," *IEEE Access*, 11, pp. 105761-105809.
- [18]. P. M. Rao and B. Chakravorty, 2023, "Design for disassembly: A key to achieving a circular economy for EV battery systems," *IEEE International Transportation Electrification Conference*, pp. 1-4,