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Abstract. This research presents a dynamic environmental management system for urban landscapes that leverages 
Recurrent Neural Networks (RNNs) in the context of IoT-enabled green roof management. Green roofs play a pivotal 
role in promoting urban sustainability by improving air quality, mitigating urban heat island effects, and enhancing 
energy efficiency. The proposed system integrates a network of environmental sensors—measuring temperature, 
humidity, light intensity, soil moisture, and air quality—to continuously monitor and optimize the performance of green 
roofs. The collected sensor data is processed using an RNN model, which is particularly well-suited for this application 
due to its ability to capture temporal dependencies and trends in sequential data. By forecasting environmental 
conditions, the RNN provides insights into the operational health and effectiveness of green roofs. Moreover, the system 
supports real-time decision-making by offering adaptive recommendations for controlling ventilation, lighting, and 
irrigation systems. This dynamic feedback mechanism not only reduces energy consumption but also strengthens the 
overall sustainability of urban environments. Experimental evaluations demonstrate that the RNN-based approach 
achieves superior accuracy, precision, and recall compared to conventional models. These findings highlight the 
potential of combining IoT technologies with advanced machine learning to optimize urban green infrastructure. The 
study underscores the broader significance of such intelligent systems in advancing sustainable urban development and 
in enhancing the resilience of cities to environmental challenges. 
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INTRODUCTION 

Buildings with green roofs and thermal insulation have been the subject of experimental study in this article.  
The study found that green roofs with thermal insulation give the highest thermal performance when compared to 
conventional, green and traditional roofs in a school building in the Gaza Strip [1].  Based on LiDAR data and 
information from the vegetation index cadaster, land surface temperature, and impermeability cadaster, this 
research outlines a technique for sustainable development that estimates the potential of green roofs and prioritises 
appropriate areas using a digital surface model [2].  Using a quasi-experimental approach, the study found that 
green roofs in cities had widely varying cooling performances [3].  Policymakers may use this inexpensive method 
to assess green roof schemes' ability to reduce urban heat.  Research on the impacts of green roofs on climate in 
Mediterranean cities in Chile found that they lower temperatures in Concepción and lessen the energy generated 
by turbulent Kinect, hence reducing the severity of heat island effects [4].  Despite promises of increased output, 
rooftop solar power plants are seeing their efficiency deteriorate.  An examination of a 500.3 kWp system reveals 
a decline in yearly energy production [5].  Green power and capturing generation loss: a suggested methodology. 

University College Dublin (UCD) in Dublin, Ireland is home to four green roof installations. This study uses 
modern sensors to capture meteorological and hydrological data from each roof, improving upon standard 
assessments [6].  Using rainfall hyetographs, the extensive dataset allowed for precise parameter modelling of 
runoff hydrographs, which were then evaluated by advanced machine learning techniques.  Urban regions see an 
increase in CO₂ uptake due to green roofs.  Using long-term data from the huge green roofs at Berlin-Brandenburg 
Airport, machine learning can estimate the net ecosystem exchange (NEE) across many years [7].  In this research, 
we look at how weather forecasts affect NEE prediction and transferability.  Improved comprehension of VR 
performance dynamics, optimisation of design parameters, and promotion of sustainable urban settings are all 
goals of this work, which investigates the use of AI and ML in VRs modelling [8].  The study's overarching goal 
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is to provide novel methods for sustainable urban stormwater management by combining real-time data with ML 
algorithms. 

To address these challenges, there is growing interest in leveraging Internet of Things (IoT) and Artificial 
Intelligence (AI) technologies to optimize green roof monitoring and management. IoT systems employ sensors, 
actuators, and communication technologies to capture and transmit real-time environmental data. In the context 
of green roofs, IoT sensors can monitor variables such as temperature, humidity, soil moisture, and solar radiation, 
transmitting the data to centralized control systems or cloud platforms for advanced analysis. The vast amount of 
data generated by IoT-enabled systems necessitates the use of machine learning (ML) and deep learning (DL) 
models to extract meaningful insights. RNNs are particularly well-suited due to their capacity to model sequential 
and time-series data. RNNs retain prior information in hidden states, enabling them to capture temporal 
dependencies and trends. This makes them highly effective for tasks such as time-series prediction, anomaly 
detection, and dynamic system control, all of which are essential for adaptive green roof management. 

Data on the effects of green roofs on urban ecology and architectural design were gathered using the Delphi 
method and remote sensing technologies in this study [9].  The impact of thermal comfort on interior settings was 
assessed using the CASBEE approach and a CNN-LSTM hybrid model.  Research on PV-GR and agricultural 
photovoltaic modules is the primary emphasis of this literature review on solar photovoltaic modules and greenery 
co-location systems [10].  Its goals are to figure out how much coverage there is for climate change, what those 
advantages are, and to provide a thorough performance evaluation.  We provide MOO-GPANN as a solution to 
the problems with approaches based on fuzzy frameworks for optimising green roof designs [11].  By processing, 
feature selecting, and predicting using GPANN can outperform previous models utilising data from NYC Green 
Roof Footprints.  To optimise the design and operation of green roofs in buildings, this study presents a new smart 
energy-comfort system for green roofs in housing estates. The system uses integrated machine learning (ML), 
Design Builder (DB) software, and Taguchi design calculations [12].  For appropriate green roof parameters, the 
optimising approach maximises thermal comfort and energy conservation for green roof structures. 

The leaching of nitrogen and phosphorus from the soil-like base makes green roofs potential sources of 
pollution.  Soil addition biochar can boost plant performance and decrease nutrient runoff [13].  It has little effect 
on the amount of water that is retained. Energy dynamics in city planning relate to green infrastructure components 
[14].  Various case studies from different places are presented, with an emphasis on the real-world consequences 
for better insulation, less heat transfer, and optimised energy use. To better understand how rooftop plantings 
affect air quality in Lahore and Faisalabad, our study used an agro-ecological framework [15].  Dust samples were 
taken at random from various locations with or without plant cover, as well as from bare rooftops, and an 
optoelectronic sensing device was utilised to record the quantity of particulate matter. Heavy metal detection was 
then performed on these samples. The purpose of the study was to determine whether 16 substantial green roofs 
located in four different Norwegian cities could be adequately estimated using single-site calibration [16].  
According to the results, parameters were ideal for one site but performed badly for the others when calibrated on 
a single site.  By calibrating at many locations, we were able to use a standard set of parameters that worked well 
across all our sites and roof types.  

A green roofing hybrid prediction model that combines VMD, TCN, and GRUs [17]. To overcome the 
difficulties in modelling complicated structures and to facilitate future research, this model correctly forecasts the 
thermal insulation performance of complicated green roof designs.  Through a comprehensive analysis of the 
variations in the roofs' physical features, environmental consequences, and performances in relation to their 
attributes, this study aims to lay the groundwork for optimising green roof designs [18].  The research uses 2D 
and 3D urban morphological factors to model the cooling effects of green roofs in downtown Austin, Texas [19].  
Using eleven different neural network techniques, it probes the relationship between DLST and city 
characteristics.  Living green roof and wall systems are the focus of this investigation on their thermal efficiency 
in cold climes, with a focus on Quito's 4C climate [20].  By controlling interior thermal conditions, maintaining 
temperatures, and withstanding bad weather, these systems prove to be resilient, according to the study. 

PROPOSED METHODOLOGY 

This study is designed to achieve the following objectives: 
1. Enhance green roof management through the deployment of IoT-based sensors for real-time data 

acquisition and intelligent environmental control. 
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2. Leverage Recurrent Neural Networks (RNNs) to accurately forecast environmental variables and 
enable adaptive modification of green roof systems. 

3. Promote plant vitality by maintaining optimal levels of soil moisture, temperature, humidity, and light 
on green roofs. 

4. Improve urban energy efficiency by utilizing green roofs as a natural temperature regulator, thereby 
mitigating the impacts of urban heat islands. 

5. Ensure sustainable resource utilization by employing data-driven decision-making to reduce water 
consumption, minimize resource waste, and support long-term green roof maintenance. 

 
This method demonstrates a sustainable approach to managing urban landscapes. The process begins with the 

acquisition of green roof sensor data, which includes temperature, soil moisture, light intensity, humidity, and other 
plant health indicators. To ensure data consistency and comparability, the raw sensor readings are preprocessed 
through data cleaning, missing value imputation, and feature normalization. Following data preparation, a task-
specific RNN architecture is developed. Since the data is sequential and collected at regular intervals, the RNN can 
effectively capture temporal dependencies and forecast future environmental conditions. To handle long sequences 
and address the vanishing gradient problem, advanced variants such as Long Short-Term Memory (LSTM) and 
Gated Recurrent Units (GRUs) are employed. 

Once the architecture is established, the model is trained using the preprocessed data. During training, the 
algorithm predicts climatic variables and optimizes green roof performance based on sensor inputs. Model 
parameters are iteratively updated to minimize the error between predicted and actual conditions, while 
hyperparameter tuning further enhances performance. After training, the model is validated using a separate dataset 
to assess generalization capability and avoid overfitting. If necessary, the architecture or hyperparameters are 
refined to improve results. After validation, the trained model is tested on an independent dataset to evaluate its 
accuracy, robustness, and computational efficiency. The final model is then integrated with IoT-enabled green roof 
systems, enabling real-time operation. In this phase, the trained RNN is deployed on a platform that continuously 
receives sensor data, generates predictions, and triggers automated actions—such as adjusting irrigation, 
ventilation, or shading systems to optimize performance. Collaboration among data scientists, domain experts, and 
engineers ensures seamless integration with IoT devices. The final stage involves full-scale deployment of the 
RNN-integrated IoT system in urban environments. Continuous monitoring and stakeholder feedback help refine 
system accuracy and adaptability. Regular maintenance and updates are performed to ensure long-term 
functionality and sustainability. This iterative cycle ensures that IoT-enabled green roof systems dynamically 
regulate environmental conditions, thereby mitigating UHIs, conserving resources, and promoting biodiversity.  

Green Roof Sensors 

To optimize performance and sustainability, the proposed IoT-enabled smart green roof system incorporates a 
network of sensors strategically positioned across the roof structure. These sensors continuously monitor key 
environmental parameters, ensuring ideal conditions for plant growth, water management, and energy efficiency. 

1. Temperature Sensors – Measure ambient and surface temperature to support thermal regulation, improve 
energy efficiency of buildings, and maintain plant vitality. 

2. Humidity Sensors – Track atmospheric moisture levels, which are essential for plant transpiration, 
growth, and microclimate regulation. 

3. Soil Moisture Sensors – Monitor soil water content, enabling precise irrigation scheduling and 
minimizing excess water consumption. 

4. Air Quality Sensors – Detect pollutants such as CO₂, volatile organic compounds (VOCs), and particulate 
matter to evaluate environmental quality and plant health. 

5. Light Intensity Sensors – Measure solar radiation levels to optimize plant photosynthesis, regulate 
shading, and enhance overall vegetation development. 

6. Soil pH Sensors – Continuously assess soil acidity or alkalinity, ensuring balanced nutrient availability 
and healthy plant growth conditions. 

 
Figure 1 illustrates the block diagram of the proposed system, showing the flow of data and operations from 

sensor acquisition → preprocessing → RNN-based prediction → IoT actuation → feedback loop, enabling efficient 
and adaptive green roof management. 
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                        FIGURE 1. Block diagram of Proposed IoT-Driven Green Roof Management with RNN 

By incorporating these sensors into an IoT-enabled smart green roof system, environmental parameters can be 
comprehensively monitored and optimized in real time. This intelligent system is designed not only to support plant 
health but also to mitigate the urban heat island effect, improve air quality, and foster urban biodiversity. Leveraging 
live sensor data, the system adaptively adjusts irrigation, ventilation, and energy use, thereby enhancing the overall 
efficiency and resilience of green roofs. Through continuous monitoring and adaptive control, the smart green roof 
contributes significantly to urban sustainability, climate resilience, and ecological balance. The sensor network 
plays a crucial role in managing and supporting decision-making within urban green roof ecosystems. By 
continuously monitoring environmental parameters, analyzing real-time data, and providing automated feedback, 
the system enhances adaptive management strategies. This capability contributes to creating more resilient, 
sustainable, and livable cities. To enable dynamic environmental management, the collected sensor data is 
processed through a Recurrent Neural Network (RNN) model. This model learns from temporal patterns in the data, 
enabling accurate predictions and proactive system responses. Table 1 outlines the data flow within the RNN 
process, illustrating how raw sensor inputs are transformed into actionable insights for optimizing the performance 
of the green roof system. 

                                                  TABLE I. Sensor Reading and Pollution Levels System Workflow 

Step Description 
Data Input Time-series environmental data (temperature, humidity, moisture, light, etc.) from sensors. 

Data Preprocessing Clean and normalize data, handle missing values, and transform data for RNN input. 
Sequence Modeling RNN processes sequential data, capturing temporal dependencies and patterns. 
Prediction Output RNN generates predictions for future environmental conditions (temperature, humidity, etc.). 
Decision Making Predictions are compared with thresholds to trigger adjustments in the system. 
Control Action Automated systems (e.g., irrigation, shading) adjust based on RNN predictions. 
Model Training Periodically retrain the RNN with updated data to improve prediction accuracy. 

 

RESULTS AND DISCUSSIONS 

The integration of IoT-enabled sensors with Recurrent Neural Networks (RNNs) significantly enhances 
environmental regulation, sustainability, and overall efficacy in smart green roof systems. The sensor network, 
comprising temperature, humidity, soil moisture, light intensity, air quality, and soil pH sensors collected real-time 
data continuously over several weeks. This data provided critical insights into the dynamic behaviour of the green 
roof, capturing variations in environmental parameters throughout the day and under different weather conditions. 
Through IoT connectivity, the system enabled autonomous, latency-free monitoring, ensuring reliable and 
extensive data collection. The time-series data was processed and used to train an RNN model, which forecasted 
future environmental variables such as temperature, soil moisture, and humidity. The model was then evaluated for 
its predictive reliability. Preliminary results showed a strong correlation between predicted and observed values, 
achieving an average prediction error below 5% for temperature, humidity, and soil moisture. This level of precision 
demonstrated the model’s ability to capture complex temporal patterns and deliver dependable forecasts for 
adaptive green roof management. 



International Journal of Industrial Engineering  
   2025;9(1):1-8. 

ISSN: 2456-8449 
 

5 
 

The predictive capability of the RNN facilitated proactive decision-making. For example, predicted soil 
moisture levels allowed the system to adjust irrigation schedules dynamically, preventing both overwatering and 
underwatering. Similarly, forecasts of temperature and humidity enabled optimization of shading and ventilation 
systems, thereby improving plant health while minimizing energy use. A key advantage of the system was resource 
optimization: by aligning irrigation with predicted rainfall and soil conditions, water consumption was reduced by 
up to 20% compared to traditional fixed schedules. Likewise, temperature-based adjustments to cooling systems 
reduced energy demand while maintaining optimal plant growth conditions. Overall, the system demonstrated 
notable improvements in green roof management, including enhanced plant vitality, increased energy efficiency, 
and improved occupant comfort within the building. Moreover, the predictive analytics framework provided faster 
response times to environmental challenges, allowing the system to adjust before conditions reached a critical 
threshold. 

However, the trial also highlighted several challenges. Sensor calibration and maintenance proved essential, as 
gradual deviations in sensor readings required periodic recalibration to preserve accuracy. External influences such 
as sudden weather fluctuations or occasional sensor failures sometimes led to discrepancies between predicted and 
observed outcomes. These issues emphasized the importance of implementing robust fault detection and system 
recovery mechanisms. Furthermore, while the RNN achieved strong predictive performance, its training process 
demanded substantial computational resources and time, which posed scalability challenges. To address these 
factors, the system’s training framework was designed to capture diverse time-series datasets across environmental 
parameters. Table 2 illustrates the RNN training process, highlighting how input data such as soil pH, temperature, 
and humidity were processed to improve predictive performance and ensure reliable decision support for green roof 
management. 

TABLE 2. Time-Series Data for RNN Model 

Time (Day/Time) 
Temperature 

(°C) 
Humidity 

(%) 

Soil  
Moisture 

(%) 

Light Intensity 
(Lux) 

Air Quality 
(CO2 ppm) 

Soil pH 

2024-12-01 06:00 15.2 80 45 320 400 6.5 
2024-12-01 12:00 18.3 70 50 800 380 6.6 
2024-12-01 18:00 16.7 75 48 600 390 6.6 
2024-12-02 06:00 14.8 82 47 310 410 6.5 
2024-12-02 12:00 19.2 68 52 850 370 6.6 
2024-12-02 18:00 17.5 73 49 620 395 6.5 
2024-12-03 06:00 15.0 80 46 330 400 6.4 

 
Figure 2 illustrates the predicted trends of temperature and soil moisture generated by the RNN model over 

time. These forecasts support dynamic decision-making in IoT-enabled green roof management systems by 
enabling timely adjustments to irrigation, shading, and ventilation strategies, thereby ensuring optimal plant growth 
and resource efficiency. 
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                                           FIGURE 2. Time-Series Prediction Graph for Green Roof Management 

Figure 3 illustrates the decline in training loss across multiple epochs. This downward trend indicates that the 
RNN model is progressively assimilating patterns from the input data, thereby enhancing its predictive capability 
and ensuring improved accuracy in green roof environmental forecasting. 
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RNN Training Loss Reduction Across Epochs
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                                                               FIGURE 3. RNN Epoch-wise Loss Curve 

Figure 4 shows the training accuracy across epochs, demonstrating a steady improvement as the RNN model 
progresses. The rising accuracy indicates superior learning performance and enhances predictive capability. 

RNN Training Accuracy Progression
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                                             FIGURE 4. RNN Training Accuracy Improvement Across Epochs 

Table 3 presents the dataset sizes used in the training, validation, and testing phases of the RNN model. Each 
subset was allocated appropriately to ensure balanced evaluation and reliable assessment of the model’s 
performance. 

TABLE 3. Dataset Distribution for RNN Model Training 

Dataset Name Train Size Validation Size Validation Size 
Temperature Data 4000 500 500 

Soil Data 4800 600 600 
Sensor Data 8000 1000 1000 

RNN Training Data 6000 750 750 

 
Table 4 compares the performance of the RNN model with alternative approaches, including LSTM, GRU, 

Random Forest, and SVM, based on key evaluation metrics. 

                                                      TABLE 4. Comparison of RNN and Other Models  

Model Accuracy (%) Precision Recall F1 Score 
RNN 92.5 90.3 91.2 90.7 

LSTM 89.4 87.5 88.3 87.9 
GRU 88.2 85.7 86.9 86.3 

Random Forest 84.6 81.9 82.7 82.3 
SVM 80.5 77.2 78.1 77.6 

 
As the system accumulates larger datasets, the RNN model requires frequent retraining, which can be resource 

intensive. Future versions of the system may explore more efficient machine learning architectures or optimization 
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strategies to reduce training duration and computational demands. The demonstrated efficacy of this IoT-enabled 
green roof management framework paves the way for further advancements in intelligent urban agriculture and 
sustainable construction practices. Future research could incorporate additional sensing modalities, such as wind 
speed and solar radiation sensors, to improve the precision of environmental monitoring and control. Moreover, 
integrating hybrid approaches that combine RNNs with reinforcement learning or ensemble methods may enhance 
both predictive accuracy and adaptive decision-making. Scaling the system to support larger and more complex 
green roof installations would also provide valuable insights into its scalability and operational flexibility. Cloud 
computing integration offers another promising direction, enabling enhanced data storage, faster model training, 
and real-time decision support, thereby facilitating large-scale deployment in urban environments. 

The findings further demonstrate that the system contributes to urban biodiversity and ecological resilience. 
Green roofs act as habitats for diverse plant species, insects, and birds, delivering crucial ecosystem services within 
cities. By combining IoT-based monitoring with RNN-driven predictive analytics, the system not only optimizes 
resource use but also fosters conditions conducive to local flora and fauna. For instance, the predictive framework 
can identify microclimatic conditions favorable to specific plant species or pollinators, supporting long-term 
ecosystem health and protection. Overall, the results indicate that the proposed approach is both scalable and 
transferable. Although the study focuses on a hypothetical urban environment, the methodologies and insights are 
broadly applicable to real-world metropolitan contexts worldwide, contributing to smarter, greener, and more 
sustainable cities. 

CONCLUSIONS 

RNN models within IoT-enabled green roof management systems are transforming urban environmental 
management. This innovative framework integrates advanced predictive analytics with ecological principles, 
offering effective strategies for mitigating the urban heat island effect while enhancing biodiversity. By leveraging 
temporal dependencies in sequential data, RNN models accurately forecast environmental conditions from IoT 
sensor inputs, enabling real-time monitoring and adaptive optimization of green roof operations. The proposed 
approach provides distinct advantages. First, it improves the accuracy and efficiency of environmental regulation 
by optimizing key parameters such as temperature, soil moisture, and plant health. Second, it strengthens urban 
ecosystems and public well-being by supporting biodiversity and ecosystem services. Importantly, RNN-based 
frameworks are both scalable and versatile, making them suitable for diverse metropolitan contexts from dense 
megacities to smaller urban centers while remaining adaptable to local conditions and sustainability priorities. 
Overall, RNN-driven IoT green roof systems represent a significant step toward more resilient and livable urban 
landscapes. Through data-driven decision-making and adaptive environmental control, cities can harness green 
infrastructure to counteract the adverse impacts of urbanization and foster healthier, more sustainable ecosystems 
for future generations. 
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