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Abstract. This study explores the transformative potential of artificial intelligence, particularly the XGBoost algorithm,
in enhancing sperm analysis for male infertility diagnosis. Its primary aim is to identify and characterize sperm
abnormalities to enable timely interventions and personalized treatment, with a focus on improving diagnostic accuracy
and effectiveness. The study evaluates how Al and XGBoost can analyze large datasets of sperm characteristics,
uncovering subtle patterns indicative of infertility. The overarching objective is to develop an automated system capable
of'accurately classifying sperm samples based on criteria such as concentration, motility, and morphology. By leveraging
machine learning and the computational power of Al, this research seeks to advance male infertility diagnosis, improve
understanding of the complex factors contributing to infertility, and ultimately support more accurate diagnoses and
better patient outcomes. Performance results from the MHSMA system show a Recall of 75.68, G-mean of 81.32,
Precision of 82.54, and AUC of 82.21, demonstrating its promising diagnostic capability.
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INTRODUCTION

Advances in artificial intelligence have driven transformative innovations across many fields, including
healthcare. In reproductive medicine, the integration of Al with state-of-the-art algorithms such as XGBoost has
created a paradigm shift, particularly in the diagnosis of male infertility. By applying Al and XGBoost to sperm
analysis, this approach establishes a new standard of accuracy, efficiency, and reliability in evaluating and
managing reproductive health concerns. This research focuses on highlighting the significant impact of Al-driven
methods, especially those leveraging XGBoost, on sperm analysis-based diagnosis of male infertility. Male
infertility is a prevalent yet often under-discussed challenge for couples trying to conceive. While traditional
sperm analysis provides valuable insights, it can be subjective and prone to human error, affecting both diagnostic
accuracy and treatment decisions. By employing Al and XGBoost, this study aims to make sperm analysis more
precise, objective, and predictive, ultimately improving the diagnosis and management of male infertility.

Several known risk factors can influence sperm count, including lifestyle choices, environmental
contaminants, maternal exposure, Metabolic Syndrome (MetS), and obesity. A man’s fertility is closely linked to
sperm count as well as sperm quality [1]. According to the World Health Organization’s 2010 criteria for semen
analysis, all patients included in this study had Nonobstructive Azoospermia (NOA), defined as the absence of
spermatozoa in semen across two separate collections taken at least three months apart. The study’s conclusions
were conditioned on the absence of post-radiation nausea and vomiting, NOA, or hypogonadotropic
hypogonadism [2]. Results indicated that XGBoost, Random Forest (RF), and LightGBM models outperformed
other machine learning algorithms and conventional logistic regression in both predictive performance and net
clinical benefit [3]. Machine learning, which forms the backbone of artificial intelligence, surpasses traditional
statistical approaches in data processing, pattern recognition, and predictive synthesis. Among these methods,
Extreme Gradient Boosting (XGBoost), a tree-based boosting algorithm, stands out for its high accuracy and low
training time, making it particularly suitable for healthcare applications [4]. Patients undergoing their first in vitro
fertilization treatment were eligible for inclusion, while those who opted out prior to Ovum Pickup (OPU) or who
did not produce any oocytes or mature oocytes at the fertilization check were excluded [5].
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Azoospermia has two clinical subtypes: Obstructive Azoospermia (OA) and Nonobstructive Azoospermia
(NOA). NOA refers to patients with testicular dysfunction, impaired spermatogenesis, and inability to produce
sperm, whereas OA occurs when the distal seminal duct is obstructed despite normal testicular spermatogenic
activity [6]. Assisted Reproductive Technology (ART) aims to induce conception, but its success is influenced by
numerous internal and external factors. ART methods include Intrauterine Insemination (IUI), In Vitro
Fertilization (IVF), and Intracytoplasmic Sperm Injection (ICSI) [7]. Gene expression data can vary due to
individual differences or tissue-specific effects, and standard clustering algorithms often struggle to detect
modules with differential gene expression [8]. In this study, five parameters characterizing semen quality—
progressive motility, total motility, semen volume, concentration, and sperm count—serve as model outputs. The
relationships between environmental pollutant metabolites and sperm quality are analyzed using various non-
linear regression techniques, including Support Vector Regression (SVR), Random Forest, AdaBoost, Gradient
Boosting, XGBoost, and feed-forward neural networks [9]. Model performance for predicting ICSI outcomes is
evaluated using multiple metrics, such as accuracy, confusion matrices, and AUC-Precision. All computations
were performed in Python, leveraging pre-existing libraries suited for machine learning applications [10].

The effectiveness of assisted reproductive technology (ART) can be improved, and resource waste minimized,
by using pre-IVF cycle criteria to predict live birth outcomes. ART results are also influenced by factors related
to the assisted reproductive process, such as stimulation protocols and the total number of embryos transferred
[11]. Among previous studies, only one investigated IVF outcomes by assessing endometrial and subendometrial
blood flow, while myometrial receptivity was not addressed [12]. Increasingly, studies have explored the
application of artificial intelligence (AI) to support embryologists in their evaluations, addressing the labor-
intensive process of monitoring embryo dynamics, which is often overlooked when embryos are transferred at the
blastocyst stage based solely on a single final snapshot [13]. Environmental and biological matrices may contain
chemical analogues, including Bisphenol A (BPA), at concentrations ranging from nanograms to micrograms per
liter. BPA, a widely used industrial chemical in epoxy resins and polycarbonates, is present in consumer products
such as thermal paper, dental sealants, medical equipment, and food packaging [14]. Additionally, water pipe
users are exposed to higher concentrations of nicotine, carbon monoxide, tar, heavy metals, and carcinogens per
session than cigarette smokers, even if the overall exposure is lower; sharing water pipe mouthpieces also presents
an infection risk [15]. In computational biology, determining sequence similarity involves counting identical
amino acid residues at each position in two sequences of equal length and dividing by the total length to obtain a
percentage. An essential initial step in model development is featuring representation, which converts physical
sequence data into digital information suitable for computational analysis [16].

A significant computational challenge in predicting miscarriage outcomes arises because the embryos used to
train classification models were pre-selected for transfer in clinics based on time-lapse visualization and were
successfully implanted [17]. While Gradient Boosting Machine (GBM) models may overfit the training dataset,
XGBoost offers improvements through regularization, which penalizes model loss as decision tree complexity
increases, making it comparable yet more robust than GBM. This study explores both boosting models for
developing a predictive model of fetal toxicity based on medication characteristics [18]. Machine learning
techniques, including XGBoost (XGB), Random Forest (RF), and Support Vector Machines (SVM), were
evaluated using a newly developed stacking model, aiding in the early detection and accurate diagnosis of neonatal
conditions, particularly in healthcare settings with limited resources [19]. XGBoost, a gradient-boosting ensemble
of decision trees, can handle survival prediction tasks by learning each tree with a survival loss function. Similarly,
Support Vector Survival Machines (SSVM) extend traditional SVM methods and have been applied in biomedical
research for survival prediction tasks [20].

The primary objective of this study is to explore how artificial intelligence, specifically the XGBoost
algorithm, can enhance the diagnostic accuracy and prognostic evaluation of male infertility. It aims to
demonstrate that Al-powered sperm analysis can detect complex patterns and features in sperm data that may be
missed by traditional methods. By integrating Al with XGBoost, the study seeks to develop a reliable, objective,
and consistent system for assessing male fertility. Large datasets encompassing diverse sperm characteristics and
clinical outcomes are utilized to train and optimize the XGBoost model, enabling it to identify subtle yet clinically
significant patterns indicative of reproductive status. Through rigorous validation and testing across varied patient
populations and clinical contexts, this research strives to establish an accurate, accessible, and generalizable tool
for the diagnosis of male infertility.
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PROPOSED SYSTEM

The application of artificial intelligence in sperm analysis enhances the accuracy of evaluations, enabling more
personalized treatment plans and increasing the likelihood of successful pregnancies. This technology streamlines
fertility assessments in clinical settings while reducing patient discomfort due to its non-invasive nature. The use
of Al, particularly the XGBoost algorithm, represents a significant advancement in diagnosing male infertility,
offering renewed hope for couples seeking to conceive. Figure 1 presents a partial gene network that illustrates the
model’s approach, highlighting the complex interactions among the vast number of genes involved.
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FIGURE 1. Introduction to the model process

Recent advances in artificial intelligence have enabled novel approaches to medical diagnosis, particularly in
the evaluation of male infertility. This introduction outlines the objectives and technical foundations of applying
Al, specifically the XGBoost algorithm, to sperm analysis. By leveraging these methods, infertility diagnosis can
become more accurate, efficient, and objective. Applying artificial intelligence, particularly the XGBoost
algorithm, to male infertility diagnosis represents a transformative advancement with far-reaching implications.
This introduction highlights the role, advantages, and diverse applications of Al and XGBoost in sperm analysis.
The primary purpose of integrating Al and XGBoost is to address the limitations of conventional diagnostic tools,
enabling faster and more precise evaluation of sperm quality. By leveraging machine learning, this approach
surpasses human assessment constraints, providing objective analyses with improved predictive accuracy. Key
benefits include the ability to detect subtle abnormalities in sperm morphology, motility, and concentration that
might otherwise go unnoticed, while also enhancing clinical decision-making by reducing turnaround times and
simplifying diagnostic procedures. Beyond basic analysis, Al-driven sperm assessment supports individualized
treatment planning by offering detailed insights into each patient’s condition and history. Additionally, this non-
invasive technology reduces patient discomfort and broadens access to infertility testing. Overall, AT and XGBoost
in sperm analysis mark a major step forward in male infertility diagnosis, offering improved outcomes and renewed
hope for couples seeking to conceive.

Figure 2 illustrates the male infertility therapy strategy, emphasizing that female reproductive potential must
generally support a 6—12-month treatment timeline for most male factor disorders. Urologic literature (Level B-C
evidence) indicates that interventions such as varicocele repair and vasectomy reversal are often cost-effective
alternatives to assisted reproduction.
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FIGURE 2. Male infertility algorithm. Practical diagnosis and treatment of male infertility

Equation 1 proposes the Gradient Boosting Algorithm where F(x) is the ensemble of weak learners m ()

weighted by « ,, and M s the number of boosting rounds. This algorithm optimally combines diverse weak

models, refining predictions iteratively. In male fertility assessment, it enhances diagnostic accuracy by learning
complex patterns in sperm data. XGBoost, as an Al-driven technique, leverages this algorithm, elevating the
precision of male infertility diagnoses through sophisticated analysis of sperm characteristics.

F(x)zzleamhm(x) )]

The integration of artificial intelligence with the XGBoost algorithm heralds a new era of efficiency and
accuracy in male infertility diagnosis. This introduction explores the wide range of potential applications and
inherent benefits of using Al and XGBoost to analyze sperm and advance diagnostic capabilities. Equation 2
illustrates the Regularization Techniques, where the error term LLL measures prediction errors, A\lambdal adjusts
regularization strength, and Q\OmegaQ represents the regularization term. This formulation balances model
accuracy and simplicity, which is crucial for preventing overfitting. In the context of male infertility diagnosis,
regularization refines the sperm analysis algorithm, optimizing performance and enhancing diagnostic precision.

A
Objective = Z?ZILOSS[)HJ:‘J + /12‘}:19(”) @)

The application of Al and the XGBoost algorithm to sperm analysis represents a significant advancement in
male infertility diagnosis, offering unprecedented accessibility, efficiency, and accuracy in assessing sperm quality
and guiding clinical decision-making. A comprehensive evaluation by a urologist or specialist in male reproduction
is recommended if the initial screening reveals an abnormal physical examination, an atypical reproductive or
sexual history, or abnormal semen analysis results. Further assessment of the male partner should also be considered
in cases of unexplained infertility or when persistent infertility remains despite treatment of a female factor, as
illustrated in Figure 3.

Equation 3 illustrates the Tree Pruning Algorithm, where TTT represents the number of leaves in the tree, and
gamma controls the pruning strength. This algorithm optimally prunes trees during model training, preventing
overfitting and improving generalization. In the context of male infertility diagnosis, the Tree Pruning Algorithm,
as an integral component of XGBoost, refines the sperm analysis model, ensuring efficient and accurate
predictions by avoiding unnecessary complexity in the decision trees.
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FIGURE 3. Evaluation of the male partner with unexplained infertility

A transformative approach to male infertility diagnosis has emerged through the application of artificial
intelligence and the XGBoost algorithm in sperm analysis. While the integration of AI and XGBoost presents
certain challenges, it also offers substantial potential and promising future applications. Automated sperm analysis
enhances clinical decision-making, reduces turnaround times, and improves diagnostic accuracy. Advances in
imaging technologies, combined with ongoing improvements in Al algorithms, may further refine and expedite
infertility assessments. Al-driven sperm analysis has the capacity to revolutionize understanding of male
reproductive health, opening new avenues for research and population-level studies. In summary, despite existing
challenges, the current and prospective applications of Al and XGBoost in sperm analysis underscore their pivotal
role in improving the detection and management of male infertility, offering renewed hope to couples seeking to
conceive.

RESULTS AND DISCUSSION

The MHSMA Open-Access Database: For this performance assessment, the Modified Human Sperm
Morphology Investigation (MHSMA) dataset was used. This multi-institutional male infertility registry contains
images of 235 male sperm samples. Specialists manually identify and classify key sperm components, including
the acrosome, vacuole, head, and tail. The dataset is divided into three subsets: 1,000 images for training, 234 for
validation, and 300 for testing. All images have dimensions of 128 x 128 pixels, resulting in a reduced level of
detail. An example of these normalized 128 x 128 images from the MHSMA dataset is shown in Figure 4.

FIGURE 4. Images taken at Normal Levels from the MHSMA collection
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In Table 1, images classified as normal are labeled as Positive, while those considered abnormal are labeled as
Negative. The MHSMA dataset contains a total of 443 instances, with an overall positive rate of 84.72%. For the
Head category, there are 1,145 positive cases and 429 negative cases, yielding a normality rate of 8§1.97%. The
Vacuole category includes 1,321 normal instances and 234 abnormal ones, resulting in a normality rate of 82.78%.
Overall, across all categories, 1,502 instances are deemed normal and 63 abnormal, corresponding to a total
normality rate of 82.13%.

TABLE 1. Dataset Description

Set Label # Positive | # Negative | % Positive
Acrosome 1264 453 84.72%
Entire dataset Head 1145 429 81.97%
Vacuole 1321 234 82.78%
Tail 1502 63 82.13%

Area Under the Curve (AUC): The Area Under the Curve (AUC) is a key metric for assessing a model’s
performance in classification tasks. In the context of sperm analysis, AUC measures the model’s ability to
distinguish between fertile and infertile samples based on features extracted from sperm data. An AUC value close
to 1 indicates excellent discriminative ability, whereas a value near 0.5 suggests performance no better than random
chance. Table 2 shows the performance metrices of the proposed system.

TABLE II. Performance of the proposed system

Label Recall | G-mean | Precision | AUC
Acrosome | 75.68 81.32 80.54 82.21
Head 82.42 83.26 81.35 76.36
Vacuole 94.53 94.65 92.32 86.09

According to Table 2, the performance metrics obtained from the MHSMA database are as follows: Recall:
75.68, G-mean: 81.32, Precision: 82.54, and AUC: 82.21. As illustrated in Figure 5, the Al-driven XGBoost model
outperformed previous methods in sperm analysis, achieving the same scores of Recalls: 75.68, G-mean: 81.32,
Precision: 82.54, and AUC: 82.21, demonstrating its superior predictive capability.
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FIGURE 5. Performance metrics of Computer-Assisted Sperm Analysis Algorithms for Accurate Evaluation of Sperm Health

CONCLUSION

The use of artificial intelligence combined with the XGBoost algorithm presents a promising approach to
improving male infertility detection through enhanced sperm analysis. While notable progress has been made,
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several challenges remain, including the need for large and diverse datasets to train Al models and validate their
effectiveness. Ensuring transparency and interpretability of Al-driven diagnostic tools is essential for gaining
clinical approval and trust. Integrating Al with XGBoost can offer improved accuracy, faster results, and
personalized treatment strategies for patients facing infertility, potentially transforming clinical practice. This
approach may also improve patient outcomes while reducing the financial and emotional burden associated with
infertility treatments. Future research should focus on refining Al algorithms, expanding dataset availability, and
conducting rigorous clinical trials to validate the efficacy of Al-based diagnostics. Expanding access to Al-driven
infertility diagnostics in resource-limited settings is particularly important to make these tools widely available and
affordable. Collaboration among researchers, clinicians, and technology developers is critical for fully realizing the
potential of Al in the diagnosis and treatment of male infertility. Performance results from the MHSMA system
include Recall: 75.68, G-mean: 81.32, Precision: 82.54, and AUC: 82.21.
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