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Abstract. This study explores the transformative potential of artificial intelligence, particularly the XGBoost algorithm, 
in enhancing sperm analysis for male infertility diagnosis. Its primary aim is to identify and characterize sperm 
abnormalities to enable timely interventions and personalized treatment, with a focus on improving diagnostic accuracy 
and effectiveness. The study evaluates how AI and XGBoost can analyze large datasets of sperm characteristics, 
uncovering subtle patterns indicative of infertility. The overarching objective is to develop an automated system capable 
of accurately classifying sperm samples based on criteria such as concentration, motility, and morphology. By leveraging 
machine learning and the computational power of AI, this research seeks to advance male infertility diagnosis, improve 
understanding of the complex factors contributing to infertility, and ultimately support more accurate diagnoses and 
better patient outcomes. Performance results from the MHSMA system show a Recall of 75.68, G-mean of 81.32, 
Precision of 82.54, and AUC of 82.21, demonstrating its promising diagnostic capability. 
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INTRODUCTION 

Advances in artificial intelligence have driven transformative innovations across many fields, including 
healthcare. In reproductive medicine, the integration of AI with state-of-the-art algorithms such as XGBoost has 
created a paradigm shift, particularly in the diagnosis of male infertility. By applying AI and XGBoost to sperm 
analysis, this approach establishes a new standard of accuracy, efficiency, and reliability in evaluating and 
managing reproductive health concerns. This research focuses on highlighting the significant impact of AI-driven 
methods, especially those leveraging XGBoost, on sperm analysis-based diagnosis of male infertility. Male 
infertility is a prevalent yet often under-discussed challenge for couples trying to conceive. While traditional 
sperm analysis provides valuable insights, it can be subjective and prone to human error, affecting both diagnostic 
accuracy and treatment decisions. By employing AI and XGBoost, this study aims to make sperm analysis more 
precise, objective, and predictive, ultimately improving the diagnosis and management of male infertility. 

Several known risk factors can influence sperm count, including lifestyle choices, environmental 
contaminants, maternal exposure, Metabolic Syndrome (MetS), and obesity. A man’s fertility is closely linked to 
sperm count as well as sperm quality [1]. According to the World Health Organization’s 2010 criteria for semen 
analysis, all patients included in this study had Nonobstructive Azoospermia (NOA), defined as the absence of 
spermatozoa in semen across two separate collections taken at least three months apart. The study’s conclusions 
were conditioned on the absence of post-radiation nausea and vomiting, NOA, or hypogonadotropic 
hypogonadism [2]. Results indicated that XGBoost, Random Forest (RF), and LightGBM models outperformed 
other machine learning algorithms and conventional logistic regression in both predictive performance and net 
clinical benefit [3]. Machine learning, which forms the backbone of artificial intelligence, surpasses traditional 
statistical approaches in data processing, pattern recognition, and predictive synthesis. Among these methods, 
Extreme Gradient Boosting (XGBoost), a tree-based boosting algorithm, stands out for its high accuracy and low 
training time, making it particularly suitable for healthcare applications [4]. Patients undergoing their first in vitro 
fertilization treatment were eligible for inclusion, while those who opted out prior to Ovum Pickup (OPU) or who 
did not produce any oocytes or mature oocytes at the fertilization check were excluded [5]. 
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Azoospermia has two clinical subtypes: Obstructive Azoospermia (OA) and Nonobstructive Azoospermia 
(NOA). NOA refers to patients with testicular dysfunction, impaired spermatogenesis, and inability to produce 
sperm, whereas OA occurs when the distal seminal duct is obstructed despite normal testicular spermatogenic 
activity [6]. Assisted Reproductive Technology (ART) aims to induce conception, but its success is influenced by 
numerous internal and external factors. ART methods include Intrauterine Insemination (IUI), In Vitro 
Fertilization (IVF), and Intracytoplasmic Sperm Injection (ICSI) [7]. Gene expression data can vary due to 
individual differences or tissue-specific effects, and standard clustering algorithms often struggle to detect 
modules with differential gene expression [8]. In this study, five parameters characterizing semen quality—
progressive motility, total motility, semen volume, concentration, and sperm count—serve as model outputs. The 
relationships between environmental pollutant metabolites and sperm quality are analyzed using various non-
linear regression techniques, including Support Vector Regression (SVR), Random Forest, AdaBoost, Gradient 
Boosting, XGBoost, and feed-forward neural networks [9]. Model performance for predicting ICSI outcomes is 
evaluated using multiple metrics, such as accuracy, confusion matrices, and AUC-Precision. All computations 
were performed in Python, leveraging pre-existing libraries suited for machine learning applications [10]. 

The effectiveness of assisted reproductive technology (ART) can be improved, and resource waste minimized, 
by using pre-IVF cycle criteria to predict live birth outcomes. ART results are also influenced by factors related 
to the assisted reproductive process, such as stimulation protocols and the total number of embryos transferred 
[11]. Among previous studies, only one investigated IVF outcomes by assessing endometrial and subendometrial 
blood flow, while myometrial receptivity was not addressed [12]. Increasingly, studies have explored the 
application of artificial intelligence (AI) to support embryologists in their evaluations, addressing the labor-
intensive process of monitoring embryo dynamics, which is often overlooked when embryos are transferred at the 
blastocyst stage based solely on a single final snapshot [13]. Environmental and biological matrices may contain 
chemical analogues, including Bisphenol A (BPA), at concentrations ranging from nanograms to micrograms per 
liter. BPA, a widely used industrial chemical in epoxy resins and polycarbonates, is present in consumer products 
such as thermal paper, dental sealants, medical equipment, and food packaging [14]. Additionally, water pipe 
users are exposed to higher concentrations of nicotine, carbon monoxide, tar, heavy metals, and carcinogens per 
session than cigarette smokers, even if the overall exposure is lower; sharing water pipe mouthpieces also presents 
an infection risk [15]. In computational biology, determining sequence similarity involves counting identical 
amino acid residues at each position in two sequences of equal length and dividing by the total length to obtain a 
percentage. An essential initial step in model development is featuring representation, which converts physical 
sequence data into digital information suitable for computational analysis [16]. 

A significant computational challenge in predicting miscarriage outcomes arises because the embryos used to 
train classification models were pre-selected for transfer in clinics based on time-lapse visualization and were 
successfully implanted [17]. While Gradient Boosting Machine (GBM) models may overfit the training dataset, 
XGBoost offers improvements through regularization, which penalizes model loss as decision tree complexity 
increases, making it comparable yet more robust than GBM. This study explores both boosting models for 
developing a predictive model of fetal toxicity based on medication characteristics [18]. Machine learning 
techniques, including XGBoost (XGB), Random Forest (RF), and Support Vector Machines (SVM), were 
evaluated using a newly developed stacking model, aiding in the early detection and accurate diagnosis of neonatal 
conditions, particularly in healthcare settings with limited resources [19]. XGBoost, a gradient-boosting ensemble 
of decision trees, can handle survival prediction tasks by learning each tree with a survival loss function. Similarly, 
Support Vector Survival Machines (SSVM) extend traditional SVM methods and have been applied in biomedical 
research for survival prediction tasks [20]. 

The primary objective of this study is to explore how artificial intelligence, specifically the XGBoost 
algorithm, can enhance the diagnostic accuracy and prognostic evaluation of male infertility. It aims to 
demonstrate that AI-powered sperm analysis can detect complex patterns and features in sperm data that may be 
missed by traditional methods. By integrating AI with XGBoost, the study seeks to develop a reliable, objective, 
and consistent system for assessing male fertility. Large datasets encompassing diverse sperm characteristics and 
clinical outcomes are utilized to train and optimize the XGBoost model, enabling it to identify subtle yet clinically 
significant patterns indicative of reproductive status. Through rigorous validation and testing across varied patient 
populations and clinical contexts, this research strives to establish an accurate, accessible, and generalizable tool 
for the diagnosis of male infertility. 
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PROPOSED SYSTEM 

The application of artificial intelligence in sperm analysis enhances the accuracy of evaluations, enabling more 
personalized treatment plans and increasing the likelihood of successful pregnancies. This technology streamlines 
fertility assessments in clinical settings while reducing patient discomfort due to its non-invasive nature. The use 
of AI, particularly the XGBoost algorithm, represents a significant advancement in diagnosing male infertility, 
offering renewed hope for couples seeking to conceive. Figure 1 presents a partial gene network that illustrates the 
model’s approach, highlighting the complex interactions among the vast number of genes involved. 

 

FIGURE 1. Introduction to the model process 

Recent advances in artificial intelligence have enabled novel approaches to medical diagnosis, particularly in 
the evaluation of male infertility. This introduction outlines the objectives and technical foundations of applying 
AI, specifically the XGBoost algorithm, to sperm analysis. By leveraging these methods, infertility diagnosis can 
become more accurate, efficient, and objective. Applying artificial intelligence, particularly the XGBoost 
algorithm, to male infertility diagnosis represents a transformative advancement with far-reaching implications. 
This introduction highlights the role, advantages, and diverse applications of AI and XGBoost in sperm analysis. 
The primary purpose of integrating AI and XGBoost is to address the limitations of conventional diagnostic tools, 
enabling faster and more precise evaluation of sperm quality. By leveraging machine learning, this approach 
surpasses human assessment constraints, providing objective analyses with improved predictive accuracy. Key 
benefits include the ability to detect subtle abnormalities in sperm morphology, motility, and concentration that 
might otherwise go unnoticed, while also enhancing clinical decision-making by reducing turnaround times and 
simplifying diagnostic procedures. Beyond basic analysis, AI-driven sperm assessment supports individualized 
treatment planning by offering detailed insights into each patient’s condition and history. Additionally, this non-
invasive technology reduces patient discomfort and broadens access to infertility testing. Overall, AI and XGBoost 
in sperm analysis mark a major step forward in male infertility diagnosis, offering improved outcomes and renewed 
hope for couples seeking to conceive.  

Figure 2 illustrates the male infertility therapy strategy, emphasizing that female reproductive potential must 
generally support a 6–12-month treatment timeline for most male factor disorders. Urologic literature (Level B–C 
evidence) indicates that interventions such as varicocele repair and vasectomy reversal are often cost-effective 
alternatives to assisted reproduction. 
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                       FIGURE 2. Male infertility algorithm. Practical diagnosis and treatment of male infertility 

Equation 1 proposes the Gradient Boosting Algorithm where  xF  is the ensemble of weak learners  xmh  

weighted by m and   is the number of boosting rounds. This algorithm optimally combines diverse weak 

models, refining predictions iteratively. In male fertility assessment, it enhances diagnostic accuracy by learning 
complex patterns in sperm data. XGBoost, as an AI-driven technique, leverages this algorithm, elevating the 
precision of male infertility diagnoses through sophisticated analysis of sperm characteristics. 

 

   xmhm mxF  1                   
(1) 

The integration of artificial intelligence with the XGBoost algorithm heralds a new era of efficiency and 
accuracy in male infertility diagnosis. This introduction explores the wide range of potential applications and 
inherent benefits of using AI and XGBoost to analyze sperm and advance diagnostic capabilities. Equation 2 
illustrates the Regularization Techniques, where the error term LLL measures prediction errors, λ\lambdaλ adjusts 
regularization strength, and Ω\OmegaΩ represents the regularization term. This formulation balances model 
accuracy and simplicity, which is crucial for preventing overfitting. In the context of male infertility diagnosis, 
regularization refines the sperm analysis algorithm, optimizing performance and enhancing diagnostic precision. 
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The application of AI and the XGBoost algorithm to sperm analysis represents a significant advancement in 
male infertility diagnosis, offering unprecedented accessibility, efficiency, and accuracy in assessing sperm quality 
and guiding clinical decision-making. A comprehensive evaluation by a urologist or specialist in male reproduction 
is recommended if the initial screening reveals an abnormal physical examination, an atypical reproductive or 
sexual history, or abnormal semen analysis results. Further assessment of the male partner should also be considered 
in cases of unexplained infertility or when persistent infertility remains despite treatment of a female factor, as 
illustrated in Figure 3. 

Equation 3 illustrates the Tree Pruning Algorithm, where TTT represents the number of leaves in the tree, and 
gamma controls the pruning strength. This algorithm optimally prunes trees during model training, preventing 
overfitting and improving generalization. In the context of male infertility diagnosis, the Tree Pruning Algorithm, 
as an integral component of XGBoost, refines the sperm analysis model, ensuring efficient and accurate 
predictions by avoiding unnecessary complexity in the decision trees. 
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                                                 FIGURE 3. Evaluation of the male partner with unexplained infertility 

 A transformative approach to male infertility diagnosis has emerged through the application of artificial 
intelligence and the XGBoost algorithm in sperm analysis. While the integration of AI and XGBoost presents 
certain challenges, it also offers substantial potential and promising future applications. Automated sperm analysis 
enhances clinical decision-making, reduces turnaround times, and improves diagnostic accuracy. Advances in 
imaging technologies, combined with ongoing improvements in AI algorithms, may further refine and expedite 
infertility assessments. AI-driven sperm analysis has the capacity to revolutionize understanding of male 
reproductive health, opening new avenues for research and population-level studies. In summary, despite existing 
challenges, the current and prospective applications of AI and XGBoost in sperm analysis underscore their pivotal 
role in improving the detection and management of male infertility, offering renewed hope to couples seeking to 
conceive. 

RESULTS AND DISCUSSION 

The MHSMA Open-Access Database: For this performance assessment, the Modified Human Sperm 
Morphology Investigation (MHSMA) dataset was used. This multi-institutional male infertility registry contains 
images of 235 male sperm samples. Specialists manually identify and classify key sperm components, including 
the acrosome, vacuole, head, and tail. The dataset is divided into three subsets: 1,000 images for training, 234 for 
validation, and 300 for testing. All images have dimensions of 128 × 128 pixels, resulting in a reduced level of 
detail. An example of these normalized 128 × 128 images from the MHSMA dataset is shown in Figure 4. 

 
                                           FIGURE 4. Images taken at Normal Levels from the MHSMA collection 
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In Table 1, images classified as normal are labeled as Positive, while those considered abnormal are labeled as 
Negative. The MHSMA dataset contains a total of 443 instances, with an overall positive rate of 84.72%. For the 
Head category, there are 1,145 positive cases and 429 negative cases, yielding a normality rate of 81.97%. The 
Vacuole category includes 1,321 normal instances and 234 abnormal ones, resulting in a normality rate of 82.78%. 
Overall, across all categories, 1,502 instances are deemed normal and 63 abnormal, corresponding to a total 
normality rate of 82.13%. 

TABLE I.  Dataset Description 

Set Label # Positive # Negative % Positive 

Entire dataset 

Acrosome 1264 453 84.72% 
Head 1145 429 81.97% 

Vacuole 1321 234 82.78% 
Tail 1502 63 82.13% 

 
Area Under the Curve (AUC): The Area Under the Curve (AUC) is a key metric for assessing a model’s 

performance in classification tasks. In the context of sperm analysis, AUC measures the model’s ability to 
distinguish between fertile and infertile samples based on features extracted from sperm data. An AUC value close 
to 1 indicates excellent discriminative ability, whereas a value near 0.5 suggests performance no better than random 
chance. Table 2 shows the performance metrices of the proposed system. 

TABLE II.  Performance of the proposed system 

Label Recall G-mean Precision AUC 
Acrosome 75.68 81.32 80.54 82.21 

Head 82.42 83.26 81.35 76.36 
Vacuole 94.53 94.65 92.32 86.09 

 
According to Table 2, the performance metrics obtained from the MHSMA database are as follows: Recall: 

75.68, G-mean: 81.32, Precision: 82.54, and AUC: 82.21. As illustrated in Figure 5, the AI-driven XGBoost model 
outperformed previous methods in sperm analysis, achieving the same scores of Recalls: 75.68, G-mean: 81.32, 
Precision: 82.54, and AUC: 82.21, demonstrating its superior predictive capability. 

 

FIGURE 5. Performance metrics of Computer-Assisted Sperm Analysis Algorithms for Accurate Evaluation of Sperm Health 

CONCLUSION 

The use of artificial intelligence combined with the XGBoost algorithm presents a promising approach to 
improving male infertility detection through enhanced sperm analysis. While notable progress has been made, 
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several challenges remain, including the need for large and diverse datasets to train AI models and validate their 
effectiveness. Ensuring transparency and interpretability of AI-driven diagnostic tools is essential for gaining 
clinical approval and trust. Integrating AI with XGBoost can offer improved accuracy, faster results, and 
personalized treatment strategies for patients facing infertility, potentially transforming clinical practice. This 
approach may also improve patient outcomes while reducing the financial and emotional burden associated with 
infertility treatments. Future research should focus on refining AI algorithms, expanding dataset availability, and 
conducting rigorous clinical trials to validate the efficacy of AI-based diagnostics. Expanding access to AI-driven 
infertility diagnostics in resource-limited settings is particularly important to make these tools widely available and 
affordable. Collaboration among researchers, clinicians, and technology developers is critical for fully realizing the 
potential of AI in the diagnosis and treatment of male infertility. Performance results from the MHSMA system 
include Recall: 75.68, G-mean: 81.32, Precision: 82.54, and AUC: 82.21. 
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