

Gaussian Processes for Modeling Drug Response in Cancer Treatment

Bavanipriya V^{1*}, Abirami M¹

¹Bhaarath College of Nursing, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India.

*Corresponding author: bavanipriyavijay@gmail.com

Abstract. The main objective is to get a better knowledge of how general practitioners can accurately forecast the effectiveness of cancer drugs and the results for their patients. This research intends to tackle the difficulties of personalized cancer treatment by making use of the adaptability and uncertainty quantification that Primary Care Physicians (PCPs) provide via extensive analysis. The goal is to provide the groundwork for effective, individualized treatment plans that maximize therapeutic treatments with few side effects. The objective is to create prediction models that can efficiently anticipate how a patient will react to a therapy by combining data that is unique to everyone, such as their genetic makeup and clinical characteristics. This study aims to show that GP-based methods may optimize cancer treatments and might be useful in the clinic by conducting extensive experiments and validation. Implications for better patient outcomes and treatment decision-making stem from this investigation's contribution to cancer precision medicine paradigm advancements. Data from six patients' samples for Drugs A, B, and C were analyzed in the Genomics of Drug Sensitivity in Cancer (GDSC) database. Dosage ranges include 50–85 mg, response time is 5.8–8.1 days, side effect severity is 1.8–4.8 days, and treatment lasts 8–15 weeks.

Keywords: Gaussian Processes, Cancer Treatment, Drug Response Modeling, Precision Medicine, Personalized Therapy

INTRODUCTION

Innovative approaches in oncology have been motivated by the necessary search for tailored cancer therapy. One such approach that has recently gained traction is the use of Gaussian Processes (GPs) to simulate the response of cancer drugs. General practitioners (GPs) can transform treatment approaches and improve patient outcomes; this outlines their purpose, aim, scope, and job contribution in this area. By using Gaussian Processes to simulate medication response in cancer therapy, we hope to be able to identify subtle patterns in patient data and make accurate predictions about how each patient will respond to treatment. This strategy aims to capture complicated interactions between numerous biological parameters and treatment responses by using the inherent flexibility and non-parametric character of GPs. The goal is to provide personalized therapeutic treatments.

This effort has two goals: first, to understand why cancer patients react differently to anticancer medications; and second, to develop models that can accurately predict how well a therapy would work. General practitioners provide a holistic framework for describing inter-patient heterogeneity and refining treatment regimens by extensive analysis of multi-dimensional datasets spanning genetic, molecular, and clinical factors. Precision oncology, in which treatments are personalized to individual patients according to their distinct molecular profiles and illness features, is the aim of GPs' involvement in cancer therapy. With the help of GPs' prediction abilities, cancer will enter a new age of customized medicine by outlining treatment regimens that are both effective and safe. This study covers a wide range of topics related to cancer therapy, including different kinds of tumors, treatment methods, and clinical environments. In a wide range of therapeutic contexts, including immunotherapy, targeted therapy, chemotherapy, and more,

GPs provide a flexible framework that may be used to understand the dynamics of treatment response in diverse patient groups. An innovative strategy to simulate medication response in cancer therapy is the result of this work's synthesis of modern statistical approaches with domain-specific knowledge in oncology. To improve the accuracy and efficiency of cancer treatments, this study lays the framework for future efforts by explaining how Gaussian Processes may reveal patterns in complicated datasets. An overview of the literature on the topic of drug response in cancer treatment using Gaussian processes is provided in Section 2. Gaussian Processes use a

Received: 04.03.2024 Revised: 08.04.2024 Accepted: 20.04.2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors

few methods, which are explored in Part 3. The results were generated using Gaussian Processes, and Section 4 offers the database utilized for this purpose, the Genomics of Drug Sensitivity in Cancer (GDSC). Part 5 concludes with the finale.

LITERATURE SURVEY

A single model is used, which is easy to understand, much as in the original CART papers. Existing CART models employ basic parametric models (such as multinomial or Gaussian models) with conjugate priors at the terminal nodes of the tree; the suggested model differs from this approach and goes beyond proportional risks. Alternatively, we use a flexible but non-conjugate posterior distribution-producing Gaussian process to simulate the unknown log-hazard function at each tree terminal node [1]. Cancer cells differ from normal cells due to the abnormal overexpression of Cell Surface receptors (CSRs), which are associated with cancer development. Dysregulation of CSRs, which includes receptor tyrosine kinases and G-protein coupled receptors, is common in cancer [2]. CSRs facilitate connections between cells both within and outside of cells. The emulation technique detailed in this article is based on proven and well-known Gaussian processes. There hasn't been enough information for non-biostatisticians to utilize Gaussian process emulation to replicate simulation models that forecast the burden of HIV comorbidities over time, and no one seems to have done it either [3]. Several Bayesian inference models use the perturbation kernel, which is based on the drug-efficacy model, to learn about common biological pathways in both in vitro combination screens and real-world clinical treatment contexts [4].

The three components that make up the CDR prediction model are the following: a CNN for prediction, a UGN for drug prediction, and a Gaussian encoder for gene expression. A variational autoencoder was the progenitor of the Gaussian encoder [5]. By calculating the gradient of the other parameters, we can determine the gradient of the proposed network's bias vector, which may be seen as a column of each layer's output. Hence, in accordance with [6], the parameters are first set to random Gaussian variables. Drug synergy models have made use of Gaussian processes. One area where these models really shine is in how well they handle forecast uncertainty. Due to their computational complexity and the need for specialist statistical expertise, Bayesian inference methods are not widely used and have limited accessibility [7]. By utilizing the chosen ideal feature sets, we constructed prediction models for the MPR of neoadjuvant immunotherapy for lung cancer using five different machine learning algorithms: decision tree, logistic regression, support vector machine, random forest, and Gaussian process [8].

Unhealthy lifestyle choices and an improper diet play a major role in the dramatic rise in colorectal cancer (CRC) cases and deaths worldwide. Local recurrence rates remain high at around 4% and distant recurrence rates at about 15%, respectively [9]. These patients either cannot be surgically treated or have a poor prognosis after surgery. The variation in the sample curves is accommodated by assuming that the random functions are Gaussian Processes with unique mean and covariance kernels for everyone. The mean and covariance functions, also called the covariance kernel, define the distribution of a Gaussian Process [10]. GPR is a non-parametric approach that uses probabilistic modeling to effectively capture complex relationships between drug solubility, temperature, and pressure. The complicated process of pharmacological prediction is well-suited to GPR because it offers both point predictions and the capacity to measure prediction uncertainty [11]. To determine whether the variations in the trend of the dose-response curve were statistically significant, we used Gaussian processes. The calculation was carried out using Gaussian processes. We computed the relevant Bayesian factor [12] to determine if the two trends under discussion differed in terms of log-likelihood, and we recreated the dose response trend for each condition by interpolating the response values at each tested concentration.

With all these downsides, it's critical to find a new way that would both speed up the therapy and make it more successful. Visual inspection and human interpretation of biological pictures were once the norm for cancer diagnosis procedures; these methods are labor-intensive and prone to mistakes [13]. Here, we use a Gaussian process on feature kernels to infer a counterfactual reaction, taking use of the overlap characteristic that is necessary for ICTE to be identifiable from observational data. To account for the possibility that the inferred results are unreliable, we reduce the weight of some cases according to the GP estimate's variance [14]. The process of diagnosing an illness using an image dataset is similar to a classification task: the data must be assigned a disease or not. It would be inappropriate to diagnose the illness just in the presence of a single defective cell in this case, as the immune system may very well fix the cell [15]. On the other hand, the population dynamics in the endpoints and live cell imaging approaches are governed by an underlying stochastic process with an additional Gaussian noise factor. Therefore, the two novel approaches may also aim to modify the parameters

governing subpopulation development and dosage response, in contrast to PhenoPop, which handles excessive noise by modifying the variance of the Gaussian term [16].

Following its selection, the lead molecule is subjected to wet laboratory tests. The two most common types of QSAR models are classification and regression. The robust Gaussian processes (GPs) are one of the regression models. By representing the latent space as a Gaussian distribution, the optimization process becomes simpler, and the number of "holes" associated with incorrect or low-quality molecules is reduced [17]. This leads to a smoother latent space. Once a model fits the data adequately, it cannot be dismissed as an explanation for the processes that generated the data—the next relevant topic is how to guide the researched biological system to a desirable state by influencing it [18]. PPCA is a method for reducing the number of dimensions in a dataset by assuming a linear connection between the observable variables and a latent space with fewer dimensions. According to PPCA, a linear mapping from the latent space to the observed space represents the low-dimensional subspace, and the seen data points are created by adding Gaussian noise to this subspace [19]. Cancer research attracted many scientists due to the high volume of patients and the length of time spent fighting the illness. Theoreticians and experimentalists work together to provide light on how tumors develop, how diseases advance, and what treatments work best. While theoreticians investigate mathematical models for the illness, trying to forecast its progression and response to therapy, experimentalists collect quantitative data on malignant systems, all with the common aim of improving patients' quality of life and reducing cancer's prevalence [20].

MATERIALS AND METHODS

1. Kernel Functions: Kernel functions play a crucial role in GPs by defining the similarity between data points in the input space. In the context of modeling drug response in cancer treatment, specialized kernels are tailored to capture the underlying biological mechanisms driving treatment efficacy. These kernels may incorporate information about genetic mutations, gene expression profiles, and other molecular features relevant to cancer biology.

2. Bayesian Inference: GPs utilize Bayesian inference to make probabilistic predictions about treatment response based on observed data. Bayesian methods allow for the incorporation of prior knowledge and uncertainty estimation, enabling robust predictions even in the presence of limited or noisy data. In the context of cancer treatment, Bayesian inference facilitates the integration of prior biological knowledge and clinical expertise into the modeling process.

3. Hyperparameter Optimization: GPs often involve tuning hyperparameters, such as the length scale and amplitude of the kernel functions, to optimize model performance. Techniques like Bayesian optimization or cross-validation may be employed to automatically search for the optimal set of hyperparameters that best fit the observed data. By fine-tuning the model's parameters, GPs can better capture the underlying patterns in drug response data and improve predictive accuracy.

4. Sparse Approximations: In scenarios where the dataset is large or computationally expensive to handle, sparse approximations of GPs can be employed to reduce computational complexity. Techniques such as inducing point methods or variational inference enable efficient approximation of the posterior distribution over latent functions while maintaining predictive accuracy. These methods make it feasible to scale GPs to large-scale drug response datasets encountered in cancer treatment research.

5. Covariate Selection: GPs allow for the incorporation of various covariates or input features that may influence drug response in cancer treatment. Feature selection techniques can be employed to identify the most informative covariates and eliminate irrelevant ones, thus improving the interpretability of the model and potentially enhancing its predictive performance.

Standard Gaussian Processes

Regression using the standard Gaussian Process is the most basic kind of GPs. Without assuming anything about the data structure underneath, they model the whole input space and assume a Gaussian prior distribution across functions. When it comes to capturing complicated interactions between input factors and medication response outcomes, standard GPs are great because of their versatility. Machine learning, engineering, and healthcare are just a few of the many areas that make heavy use of Standard Gaussian Processes (GPs), a robust statistical

technique. Fundamentally, GPs represent the idea of Bayesian inference, which offers a versatile framework for representing intricate data interactions without relying on rigid parametric assumptions. Standard Gaussian Processes rely on the idea of setting a prior distribution over functions and then updating this distribution using Bayes' theorem to account for observed data. To express the revised ideas on the underlying function considering the new data, GPs use the features of multivariate Gaussian distributions to produce posterior distributions. These posterior distributions provide a probabilistic framework for inferring and making predictions while encapsulating uncertainty. Standard Gaussian Processes provide a flexible method for cancer treatment-related drug response modeling, which in turn allows for individualized therapeutic approaches that consider each patient's specific traits and illness profile. Sir Run Run Shaw Hospital (SRRSH) patients were utilized for model training and internal validation, whereas Zhejiang Cancer Hospital (ZCH) patients were employed for independent external testing. Figure 1 details patient inclusion and exclusion.

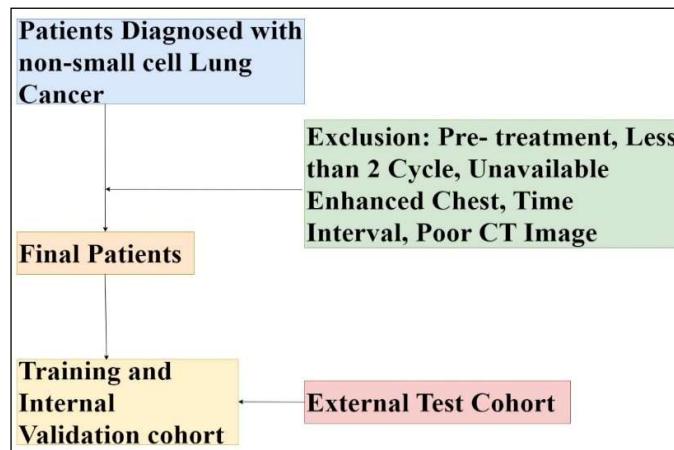


FIGURE 1. Patient Section and Distribution Flowchart

Sparse Gaussian Processes

To solve the problem of scalability when working with big datasets, sparse GPs are a close approximation to regular GPs. Sparse GPs approximate the underlying function using a subset of data points (inducing points) rather than modeling the complete input space. Sparse GPs decrease computer complexity while maintaining prediction accuracy by picking a representative sample of data. A modification of normal Gaussian Processes, Sparse Gaussian Processes (GPs) aim to tackle scalability problems that arise with big datasets.. Figure 2 shows the survey structure of this paper, which summarizes non-Gaussian stochastic system research over the last five years.

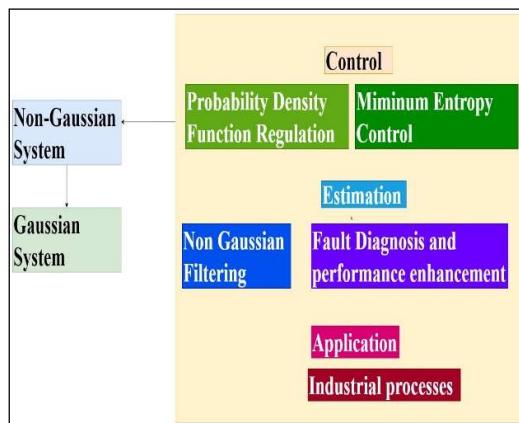


FIGURE 2. Survey structure with summarized sub-topics.

Sparse GPs operate by choosing a subset of data points, called inducing points, to represent the underlying function, and then approximating the whole Gaussian Process. Sparse GPs, which use inducing points to minimize computing complexity while maintaining prediction accuracy, are well-suited to analyze large datasets that are often encountered in industrial applications. One interesting area of cancer treatment research is the use of Sparse Gaussian Processes to estimate medication response in different patient groups and with different treatment plans. Sparse GPs make it possible to create individualized treatment plans that consider each patient's specific biological traits and clinical profile by effectively managing massive amounts of data. Many researchers improved their ability to handle the obstacles, and some outcomes met design criteria while others partially fixed the issues.

Hierarchical Gaussian Processes

To represent data structures with a hierarchical structure, hierarchical GPs build upon the fundamental GP architecture. Hierarchical GPs have the potential to capture many levels of variability in cancer therapy, including variability at the patient level, variability at the tumor subtype level, and variability unique to treatments. Drug response data may be well accounted for by these models by using hierarchical priors. A more complicated version of the ordinary Gaussian Process, Hierarchical Gaussian Processes (GPs) are designed to simulate the hierarchical structures seen in various datasets. For Hierarchical GPs to function, it is necessary to use hierarchical priors to identify nested sources of variability at various levels of the data structure. Hierarchical GPs allow complex connection modeling by repeatedly recording interdependencies between latent variables. An effective method for assessing varied treatment methods and heterogeneous patient populations is Hierarchical Gaussian Processes, which are found in applications like cancer therapy. These models may represent diversity across many levels, including patient-specific traits, tumor subtypes, and treatment-specific effects, by allowing hierarchical structures. Hierarchical GPs allow for the creation of individualized treatment plans that are specific to each patient's condition and clinical profile by including hierarchical priors. Most supervised ML regression tasks need a function generator, although typically seldom say so. The function generator may produce endless functions. Usually, we require it to discover the dataset's function. Hopefully, one of our function generator's functions matches the function we're looking for. Figure 3 shows function generators.

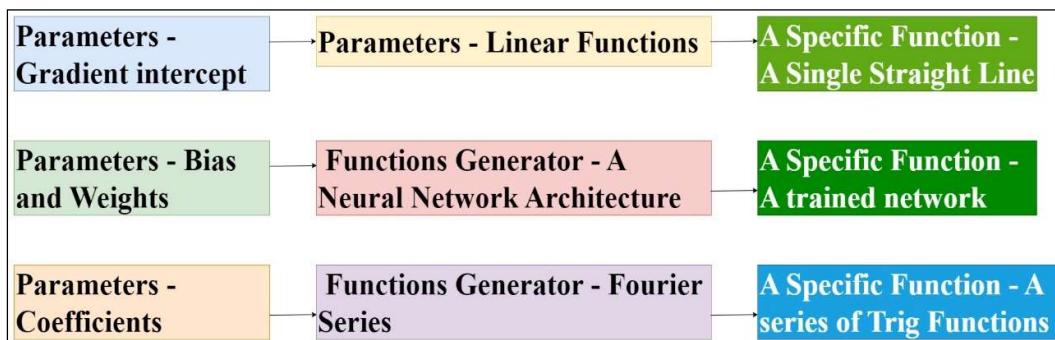


FIGURE 3. Examples of function generators

Latent Variable Gaussian Processes

To capture hidden factors impacting medication response, general practitioners use latent variables into the modeling framework. Variability in treatment results may be accounted for in part by these latent variables, which may reflect treatment mechanisms, unobserved biological processes, or patient-specific traits. Latent variable GPs enhance prediction performance by discovering hidden patterns by inferring latent variables from seen data. To capture latent variables impacting the observed data, a sophisticated version of ordinary Gaussian Processes called Latent Variable Gaussian Processes (GPs) is used. To account for the unobserved factors that cause data variability, Latent Variable GPs functions by adding latent variables to the modeling framework. Hidden patterns and underlying structures within the data may be revealed by Latent Variable GPs via the use of Bayesian inference to infer latent variables from observable data. Latent Variable Gaussian Processes provide a strong tool for understanding the intricate interaction of genetic, molecular, and clinical variables that affect the response to cancer treatments and other similar applications. Understanding the mechanisms causing varied responses to anticancer therapy may be enhanced by integrating latent variables that reflect unobserved biological processes or patient-

specific traits. Latent Variable GPs make it easier to create individualized treatment plans by including latent variable modeling, which considers each patient's specific illness profile and treatment requirements. AI-powered cancer research is accessible to non-programmers with powerful AI core services and resources. Future digital healthcare and clinical practices will use algorithm-based AI for radiological image interpretation, EHRs, and data mining for more accurate cancer treatment. AI in cancer research may be more successful with sufficient data for ML and DL model development. Figure 4 illustrates AI-based cancer research methods.

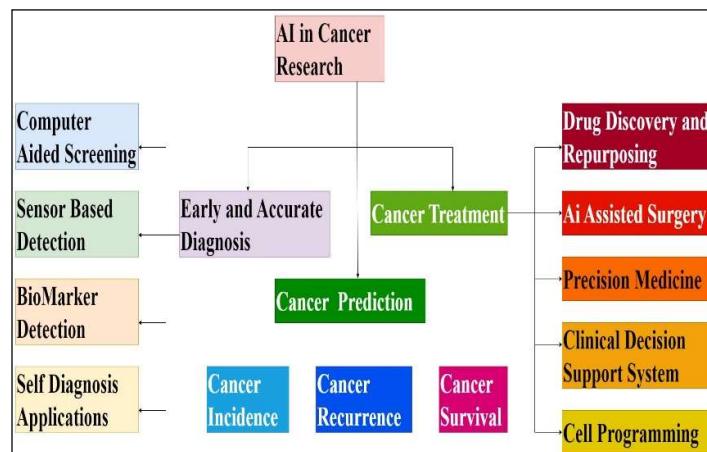


FIGURE 4. Approaches for cancer research using AI

RESULTS AND DISCUSSION

Non-Stationary Gaussian Processes

To accommodate for shifting trends or patterns in the data, non-stationary GPs loosen the normal GPs' assumption of stationarity. Using non-stationary GPs, oncologists may better understand how various tumor types, patient demographics, and treatment regimens affect the medication response across time and space. These models improve their ability to account for variability in treatment response dynamics by using non-stationary kernels. To account for changing trends and patterns in the data, Non-Stationary Gaussian Processes (GPs) are an adaptable variation of regular Gaussian Processes. To enable the model to adjust to changes in the data's underlying structure, non-stationary GPs operate by easing the assumption of stationarity. Non-Stationary GPs can simulate complicated events more accurately because they use non-stationary kernels to capture data fluctuations in space and time. Non-Stationary Gaussian Processes provide a useful method for capturing therapy-induced heterogeneity across patient groups, tumor types, and treatment regimens in cancer treatment and similar applications. Incorporating non-stationarity into these models allows for a more accurate portrayal of treatment response dynamics, which in turn allows for the creation of individualized therapy plans that are specific to each patient's illness profile and clinical trajectory.

Five cancer patients' Drug A responses are shown in Table 1. Each row records dose, response score, side effects, and treatment duration. These factors evaluate Drug A's efficacy and tolerability. Gaussian Processes might anticipate future reactions to this data, improving dose and avoiding adverse effects depending on patient characteristics.

TABLE 1. Patient Responses to Drug A

Patient ID	Dosage (mg)	Response Score	Side Effects Severity	Treatment Duration (weeks)
1	50	7.9	3.5	12
2	65	8.4	2.1	10
3	50	6.2	4.8	14
4	75	9.1	1.4	8
5	65	7.5	3.1	11

TABLE 2. Patient Responses to Drug A

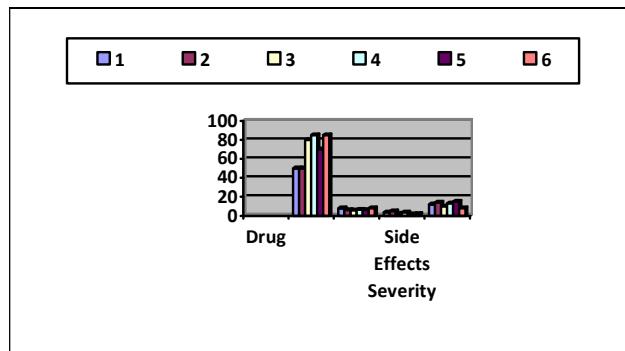
Patient ID	Dosage (mg)	Response Score	Side Effects Severity	Treatment Duration (weeks)
6	80	5.8	2.3	10
7	90	8.7	1	9
8	85	6.4	3.6	13
9	100	9	2	7
10	95	7.2	4.2	12

Table 2 displays five patients' Drug B responses, including dose, response score, side effects severity, and treatment duration. This table illuminates how Drug B doses impact therapy effectiveness and patient tolerance. Clinicians need this information to customize treatment strategies. The model may learn from this data and predict ideal therapy settings that balance effectiveness and adverse effects for future patients using Gaussian Processes. The treatment information for another group of Drug C patients is in Table 3. Dosage, response score, side effects, and therapy duration are included. Drug C's efficacy and safety may be assessed across doses and patient profiles using the dataset. Using Gaussian Processes, this data may better predict individual results, enabling judgments on the best treatment method to maximize benefit and minimize side effects for each patient.

TABLE 3. Patient Responses to Drug C

Patient ID	Dosage (mg)	Response Score	Side Effects Severity	Treatment Duration (weeks)
11	70	6.1	1.8	15
12	60	5.4	3	11
13	75	8.3	2.4	9
14	80	7	3.9	13
15	85	8.1	2.1	8

Figure 5 combines patient responses to cancer medications A, B, and C. Drug type, dose, response score, side effects, and treatment duration are listed. This detailed review helps researchers and healthcare practitioners compare pharmacological effectiveness and tolerability. Healthcare providers may use Gaussian Processes to update and tailor treatment strategies to enhance therapeutic efficacy and minimize adverse effects based on prediction insights from numerous medication reactions.

**FIGURE 5.** Comprehensive Analysis of Patient Responses to Multiple Cancer Treatment Drugs

CONCLUSION

Although there are significant obstacles, there are also potential paths for using Gaussian Processes (GPs) to simulate medication response in cancer therapy. Data scarcity, computational complexity, and model interpretability are still major obstacles, even with breakthroughs. Nevertheless, significant results may be achieved by resolving these issues. Primary care physicians pave the way for individualized treatment plans that maximize treatment effectiveness and reduce side effects. Next steps include improving GP techniques, including other data modalities, and testing models in large-scale clinical environments to ensure their validity. To implement GP-based methods into everyday clinical practice, it is essential for doctors, data scientists, and biostatisticians to work together. It's important to consider constraints, including the potential for model bias and the necessity for robust validation procedures. To fully use GP-based drug response modeling for cancer therapy and advance precision

oncology paradigms, it is essential to address these constraints. Findings from the GDSC database, based on six patients' samples of data for Drugs A, B, and C There is a wide range of medication dosages (50–85 mg), response times (5.7–8.1 days), side effect severity (1.8–4.8 days), and treatment durations (8.0–15.0 weeks).

REFERENCES

- [1]. R. D. Payne, N. Guha, and B. K. Mallick, 2024, "A Bayesian survival treed hazards model using latent Gaussian processes," *Biometrics*, **80**(1), pp. 1-8.
- [2]. M. Sinkala, K. Naran, D. Ramamurthy, N. Mungra, K. Dzobo, D. Martin, and S. Barth, 2024, "Machine learning and bioinformatic analyses link the cell surface receptor transcript levels to the drug response of breast cancer cells and drug off-target effects," *Plos one*, **19**(2), pp. 1-20.
- [3]. S. J. Sawe, R. Mugo, M. Wilson-Barthes, B. Osetinsky, S. A. Chrysanthopoulou, F. Yego, A. Mwangi, and O. Galárraga, 2024, "Gaussian process emulation to improve efficiency of computationally intensive multidisease models: a practical tutorial with adaptable R code," *BMC Medical Research Methodology*, **24**(1), pp. 1-13, 2024.
- [4]. M. Griffiths, A. Kubayev, J. Laurie, A. Giorni, L. A. Zillmann da Silva, P. Sivasubramaniam, M. T. Foster, A. V. Biankin, and U. S. Asghar, 2024, "Computational prediction of therapeutic response and cancer outcomes," *MedRxiv*, pp. 1-29.
- [5]. J. Kim, S. H. Park, and H. Lee, 2024, "PANCDR: precise medicine prediction using an adversarial network for cancer drug response," *Briefings in Bioinformatics*, **25**(2), pp. 1-10.
- [6]. H. Liu, F. Wang, J. Yu, Y. Pan, C. Gong, L. Zhang, and L. Zhang, 2024, "DBDNMF: A Dual Branch Deep Neural Matrix Factorization method for drug response prediction," *PLOS Computational Biology*, **20**(4), pp. 1-22.
- [7]. F. Abbasi, and J. Rousu, 2024, "New methods for drug synergy prediction," arXiv preprint arXiv: 2404.02484, pp. 1-20.
- [8]. D. Huang, C. Lin, Y. Jiang, E. Xin, F. Xu, Y. Gan, R. Xu, F. Wang, H. Zhang, K. Lou, and L. Shi, 2024, "Radiomics model based on intertumoral and peritumoral features for predicting major pathological response in non-small cell lung cancer receiving neoadjuvant immunochemotherapy," *Frontiers in Oncology*, **14**, pp. 1-13.
- [9]. N. J. Liu, M. S. Liu, W. Tian, Y. N. Zhai, W. L. Lv, T. Wang, and S. L. Guo, 2024, "The value of machine learning based on CT radiomics in the preoperative identification of peripheral nerve invasion in colorectal cancer: a two-center study," *Insights into Imaging*, **15**(1), pp. 1-11.
- [10]. J. Bodelet, C. Potente, G. Blanc, J. Chumbley, H. Imeri, S. Hofer, K. M. Harris, G. Muniz-Terrera, and M. Shanahan, 2024, "A Bayesian functional approach to test models of life course epidemiology over continuous time," *International Journal of Epidemiology*, **53**(1), pp. 1-9.
- [11]. M. Li, W. Jiang, S. Zhao, K. Huang, and D. Liu, 2024, "Employment of artificial intelligence approach for optimizing the solubility of drug in the supercritical CO₂ system," *Case Studies in Thermal Engineering*, **57**, pp. 1-10.
- [12]. S. Pellecchia, M. Franchini, G. Viscido, R. Arnese, and G. Gambardella, 2024, "Single cell lineage tracing reveals clonal dynamics of anti-EGFR therapy resistance in triple negative breast cancer," *Genome Medicine*, **16**(1), pp. 1-20.
- [13]. J. Hassan, S. M. Saeed, L. Deka, M. J. Uddin, and D. B. Das, 2024, "Applications of Machine Learning (ML) and Mathematical Modeling (MM) in Healthcare with Special Focus on Cancer Prognosis and Anticancer Therapy: Current Status and Challenges," *Pharmaceutics*, **16**(2), pp. 1-50.
- [14]. L. Nagalapatti, A. Iyer, A. De, and S. Sarawagi, 2024, "Continuous Treatment Effect Estimation Using Gradient Interpolation and Kernel Smoothing," arXiv preprint arXiv: 2401.15447, pp. 1-15.
- [15]. T. Hayashi, N. Ito, K. Tabata, A. Nakamura, K. Fujita, Y. Harada, and T. Komatsuzaki, 2024, "Gaussian process classification bandits," *Pattern Recognition*, **149**, pp. 1-11.
- [16]. C. Wu, E. B. Gunnarsson, E. M. Myklebust, A. Köhn-Luque, D. S. Tadele, J. M. Enserink, A. Frigessi, J. Foo, and K. Leder, 2024, "Using birth-death processes to infer tumor subpopulation structure from live-cell imaging drug screening data," *PLoS computational biology*, **20**(3), pp. 1-29.
- [17]. S. Singh, H. Gupta, P. Sharma, and S. Sahi, 2024, "Advances in Artificial Intelligence (AI)-assisted approaches in drug screening," *Artificial Intelligence Chemistry*, **2**(1), pp. 1-16.
- [18]. S. A. Crouch, J. Krause, T. Dandekar, and T. Breitenbach, 2024, "DataXflow: Synergizing Data-Driven Modeling with Best Parameter Fit and Optimal Control—An efficient data analysis for Cancer research," *Computational and Structural Biotechnology Journal*, pp. 1-36.
- [19]. J. Labory, E. Njomgue-Fotso, and S. Bottini, 2024, "Benchmarking feature selection and feature

extraction methods to improve the performances of machine-learning algorithms for patient classification using metabolomics biomedical data," *Computational and Structural Biotechnology Journal*, pp. 1274-1287.

[20]. T. Duswald, E. A. Lima, J. T. Oden, and B. Wohlmuth, 2024, "Bridging scales: A hybrid model to simulate vascular tumor growth and treatment response," *Computer Methods in Applied Mechanics and Engineering*, **418**(2), pp. 1-27.