

IBM Watson Studio for Crude Oil Price Forecasting Using Cloud-Based Techniques

D S Deepika^{1*}, Raja Thimmarayan², S. Durga Devi³, V. Vidya Lakshmi⁴
K. Jeevitha⁴, Monisha R⁵

¹Department of Information Technology, R.M.D. Engineering College, Chennai, Tamil Nadu, India

²Department of Mechatronics Engineering, KCG College of Technology, Chennai, Tamil Nadu, India

³Department of Computer Science and Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, India

⁴Department of Electronics and Communication Engineering, R.M.K. Engineering College, Chennai, Tamil Nadu, India.

⁵Department of Management Studies, St. Joseph's College of Engineering, Chennai, Tamil Nadu, India.

*Corresponding author: deepika.it@rmd.ac.in

Abstract. Economic planning, risk management, and investment strategies depend on crude oil price predictions. Advanced analytical capabilities in IBM Watson Studio, a cloud-based data science platform, enable reliable forecasting models. The goal is to improve crude oil price forecasts using IBM Watson Studio's machine learning. The goal is to analyze historical pricing patterns, market indicators, and geopolitical effects using cloud-based data processing, predictive modelling, and real-time analytics. We want to create a scalable, automated forecasting system to enhance energy decision-making. IBM Watson Studio uses machine learning and deep learning for data intake, feature engineering, and model training. Scalable cloud deployment allows large-scale data processing and real-time model upgrades. Automated data pipelines reduce human involvement and improve predictions. Predictive analytics improve price trend detection, revealing market variations. Deep learning models, real-time data integration, and adaptive forecasting may improve. Cloud-based forecasting supports proactive market risk mitigation and resource allocation in energy trading, financial planning, and policymaking.

Keywords: Crude Oil Price Forecasting, IBM Watson Studio, Cloud-Based Techniques, Machine Learning Models, Energy Market Analytics.

INTRODUCTION

Crude oil price predictions are crucial in the energy and finance sectors because they affect global economies and market stability. Traditional crude oil price forecasts use historical patterns and simple statistical approaches, which may not account for changing global influences. Cloud-based technologies like IBM Watson Studio use sophisticated analytics, machine learning models, and scalable computing capacity to change price prediction. These skills provide market information and improve forecasts. IBM Watson Studio uses cloud-based methods to improve crude oil price forecasts. A complete system that uses large datasets, machine learning techniques, and cloud-driven real-time insights is the goal. The purpose is to help stakeholders make educated choices, mitigate risks, and optimize strategy in uncertain markets.

IBM Watson Studio's cloud-based architecture, data pretreatment tools, and machine learning libraries make it appropriate for this deployment. The system adapts to quick changes and makes actionable forecasts by digesting real-time global financial, geopolitical, and economic data. Cloud computing's scalability allows it to manage large datasets, improving analysis and prediction. The limits of conventional methodologies and the benefits of cloud-based systems are discussed in Section 2 of crude oil price predictions. This section discusses how global economic circumstances, geopolitical conflicts, and market volatility affect crude oil prices and how cloud-driven solutions might help. Section 3 examines crude oil price forecast using IBM Watson Studio. The technological framework includes data collecting, preprocessing, and machine learning model applications. The importance of cloud computing in handling massive datasets, scalable infrastructure, and real-time analytics is also examined. This section also emphasizes the necessity of sophisticated visualization tools for insight presentation. Section 4 presents metrics and case studies to assess the system's performance. This section compares conventional and

Received: 15.10.2022 Revised: 25.11.2022 Accepted: 19.12.2022

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors

cloud-based methodologies to exhibit forecast accuracy, efficiency, and market adaptation gains. Section 5 concludes with a detailed overview of cloud-based crude oil price prediction methods and their transformational potential. To promote innovation in this field, deep learning models and hybrid techniques are suggested.

LITERATURE SURVEY

Intelligent Health Tracking Make use of IBM Watson and the Internet of Things. A graphical tool called AutoAI, developed by IBM Watson, makes it easier to build smart health monitoring systems that are enabled by the Internet of Things. The system can provide real-time health insights by integrating, analyzing, and automating data. Proactive healthcare delivery is aided by enhanced patient monitoring via linked devices, and personalized healthcare applications are supported by detailed analysis with the help of IBM's visualization tools [1]. **Predicting River Water Quality using Blockchain Technology.** A system for tracking river water quality can be built with the use of blockchain technology and artificial intelligence. Predictive modelling powered by artificial intelligence determines degrees of contamination, while blockchain guarantees the veracity of data. This concept provides a proactive strategy for environmental sustainability by demonstrating how decentralized data sharing and predictive analysis may assist with water quality management [2]. **Using Machine Learning to Predict the Risk of Heart Disease.** An effective method for estimating the likelihood of cardiovascular illness may be found in machine learning, more especially in decision tree algorithms. Health care practitioners may personalize preventive treatment by seeing early warning signals of risk variables by running patient data through these algorithms. Because they improve diagnostic accuracy, decision tree models are useful instruments for dealing with a widespread health problem [3]. **Coding and Auto-Tuning in the Security-Petroleum Complex.** In the security-petroleum industry, there are complex socio-technical dynamics that are reflected in the use of speech modulation technologies like Auto-Tune and linear predictive coding. This article examines these technologies through the lens of how they have altered communication protocols within certain industries, drawing attention to the growing influence of digital tools in this process [4].

Applications and Tools for Big Data Analytics. Many important tools and applications are part of the information value chain that is linked to big data analytics. Everything from gathering facts to reaching a final choice is covered in this high-level outline. The significance of strategic data utilization in areas such as healthcare, finance, and retail are underscored by the emphasis on high-impact solutions [5]. **Prevention of Corrosion in Steel via Predictive Models.** By comparing approaches and using prediction models that include commonly used medications, we can evaluate the effectiveness of corrosion inhibitors in steel. Corrosion prevention is critical for structural integrity in sectors like construction and manufacturing [6]. To assess inhibition efficiency, advanced machine learning algorithms are used. This provides a systematic methodology. **Improving Organizational Performance with Convolutional Neural Networks Built on the Internet of Things.** Internet of Things (IoT) Convolutional Neural Networks (CNNs) improve data processing capabilities, which in turn streamline commercial applications. CNNs aid businesses in making better decisions by providing powerful analytics. Insights generated by the Internet of Things enable companies to incorporate real-time data, enabling flexible responses to market needs [7]. **Technologies for Long-Term Success in Business Driven by AI.** The use of AI to improve business models lays groundwork for long-term sustainability. Artificial intelligence (AI) has a role in sustainability plans for the long run, since businesses that use it become much more adaptable and competitive [8].

Cost-Effective Upkeep of Offshore Wind Farms. The suggested reference modelling technique aims to control the expenses associated with offshore wind plant maintenance. Operators minimize downtime and maximize productivity by prioritizing data-driven initiatives, which lead to optimum maintenance schedules. Worldwide initiatives to improve the efficiency of renewable energy sources and save operating costs are in line with this strategy. [9]. **The Game-Changing Effect of AI on Innovating Businesses.** Better market research, more efficient operations, and more engaging customers are just a few examples of how artificial intelligence is revolutionizing entrepreneurship. Entrepreneurs may get practical insights and make well-informed choices with the help of AI-driven data analytics. To stay ahead in today's fast-paced business world, artificial intelligence (AI) is a game-changer [10]. **To Make Supply Chains More Sustainable, Use Blockchain Technology and Artificial Intelligence.** Together, AI and blockchain provide a solid foundation for environmentally responsible supply chain management. AI's analytical prowess plus blockchain's immutability allow for more precise monitoring, less waste, and lower costs. Supply chain activities are made more resilient by this integration, which helps in meeting sustainability criteria [11]. Technologies utilizing the Internet of Things for the Monitoring of Perishable Goods. To monitor the whereabouts of foodstuffs that are about to spoil, the "Chain of Things" technology is used. By

keeping tabs on manufacturing, storage, and transportation environments, this Internet of Things (IoT) technology improves food safety. When it comes to managing food safety, real-time monitoring is key to reducing spoilage and staying in compliance with regulations [12].

Synergies in Drug Discovery using Artificial Intelligence. Tools powered by artificial intelligence are improving the drug development process by making it easier to get from basic research to clinical trials. To save time and money, machine learning algorithms can anticipate how well compounds work and if they will have any negative side effects. The use of AI highlights its importance in tackling intricate problems in pharmaceutical research [13]. **Arabic Chatbots: Difficulties and Their Resolutions.** The creation of Arabic chatbots is complicated due to factors such as user expectations and linguistic subtleties. Improvements in natural language processing that account for dialectal differences may help with this problem, leading to more accurate and culturally appropriate interactions. The development of artificial intelligence in Arabic-speaking countries is being bolstered by improved chatbot models [14]. **Skills Required of Data Analysts in the Field of Data Analytics.** Using a theory-driven approach, we investigate what the industry expects from data analysts in terms of competency. Competencies like as technological know-how, analytical thinking, and effective communication are in high demand across industries due to the increasing need for data-driven decisions [15]. **Marketing using Big Data.** With the use of big data analysis, public relations (PR) campaigns in today's digital world can better reach their intended audiences. The public relations industry uses data gleaned from websites and social media to craft targeted messaging. With the use of big data, reputation management and brand positioning may be approached with precision [16].

Important Issues in AI. Ten major obstacles to responsible AI development have been identified, including both the technological and ethical aspects of the field. These difficulties represent the effects of AI on fields such as healthcare, finance, and autonomous systems, and they span the gamut from reducing bias to making models interpretable. To guarantee that AI applications are useful, solutions are important [17]. **Tackle Important Issues Regarding AI-Driven Medical Ethics.** Examining issues of prejudice, patient autonomy, and doctor-patient interactions, this examines the moral weight of artificial intelligence in healthcare. To be ethically acceptable, AI used in healthcare must provide accurate diagnoses while both protecting patients' privacy and ensuring their informed consent. This moral stance encourages faith in healthcare AI solutions [18]. **Artificial Intelligence Tools and Resources for Architectural Use.** Data-driven problem-solving in engineering is made possible by AI technologies and platforms. Optimization of design, diagnostics, and predictive maintenance are achieved by the use of machine learning models and algorithms. Accuracy, efficiency, and new ideas are all improved when engineering uses AI [19]. **Big Data Analytics' Influence on the Medical Field.** Better patient care, more efficient operations, and lower healthcare costs are all results of big data analytics' revolutionary impact on the healthcare industry. Treatment techniques, patient outcomes, and administrative procedures are all improved by data insights. This research proves that big data is essential for updating healthcare delivery systems [20].

PROPOSED SYSTEM

The planned solution would build an enhanced framework for predicting the price of crude oil by using IBM Watson Studio's cloud-based environment. By integrating real-time data processing, data analytics, and machine learning (ML), this system intends to provide a solution that is accurate, efficient, and scalable. Technology helps those involved in crude oil trading and investing make better judgments by considering complicated elements such as market volatility, global economic issues, and geopolitical events. Figure 1 illustrates a comprehensive overview of the architecture of IBM Watson Studio for predicting crude oil prices. It comprises elements like data gathering modules, preprocessing layers, machine learning models, and visualization tools, all linked via cloud-based infrastructure. Essential components include cloud data storage, automated machine learning pipelines, and connection with IBM Watson AI services.

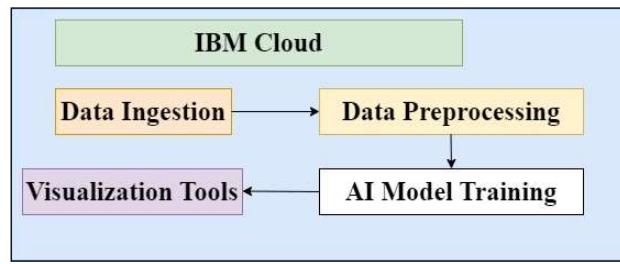


FIGURE 1. Block Diagram of IBM Watson Studio Overview

Requirement Analysis and System Design

Information sources, technological framework, and prediction goals are all part of an all-inclusive needs study. Several variables impact the ability to forecast the price of crude oil. These include changes in supply and demand, geopolitical tensions, currency movements, and macroeconomic indicators. Historical pricing data, financial reports, and news sentiment analysis are just a few of the varied information that the system combines to capture this complexity. The system's modular design facilitates the incorporation of various data pipelines and prediction models. Scalability, security, and sophisticated analytics are the key features that make IBM Watson Studio's cloud platform stand out. The design incorporates modules for data intake, procedures for preprocessing, models for machine learning, and visualization dashboards that are easy for users to navigate. Due to the delicate nature of financial data, security measures are in place to guarantee its authenticity and privacy. Figure 2 depicts the data flow in IBM Watson Studio for crude oil forecasting. The procedure starts with the collection of data from many sources, such as IoT devices, historical datasets, and external APIs. The data undergoes preprocessing stages, including normalization and feature extraction, prior to being input into predictive models stored on IBM's cloud platform.

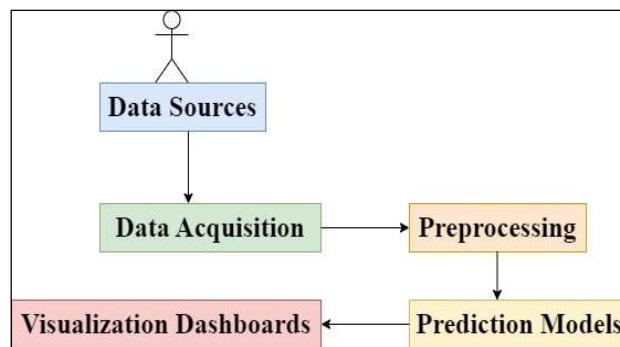


FIGURE 2. Block Diagram of IBM Watson Studio Data Flow

Data Acquisition and Integration

Gathering information from various sources is the main emphasis. Sources for crude oil price data include commodities trading platforms, international financial exchanges, and databases tailored to certain industries. The data connectors in IBM Watson Studio make it easy to integrate all these different datasets, which allow for real-time updates and gives predictive models access to the best, most up-to-date information. This schematic in Figure 3 illustrates the deployment architecture. It illustrates the training and deployment of models like APIs on IBM Cloud. The architecture comprises a model repository, monitoring systems, and endpoint management for real-time predictions.

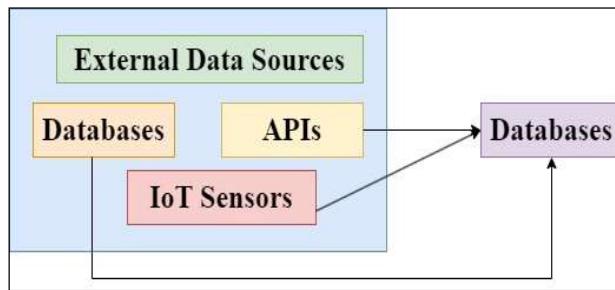


FIGURE 3. Block Diagram of IBM Watson Studio Deployment

This improves the quality and usefulness of the raw data for predictive modeling by cleaning and converting it. Automated preparation procedures deal with instances of conflicting formats, missing data, and duplicate entries. Anomalies in time series data are addressed using statistical methods like smoothing and interpolation. An essential part of this phase is featuring engineering. The architecture shown in Figure 4 emphasizes data integration for predicting crude oil prices. It comprises elements such as various data sources, data integration layers, and connectors that engage with Watson Studio's analytical instruments. The data sources include IoT sensors, external APIs, and historical datasets. The integration layer facilitates seamless data management and translation, allowing Watson's AI models to easily analyze both organized and unstructured data.

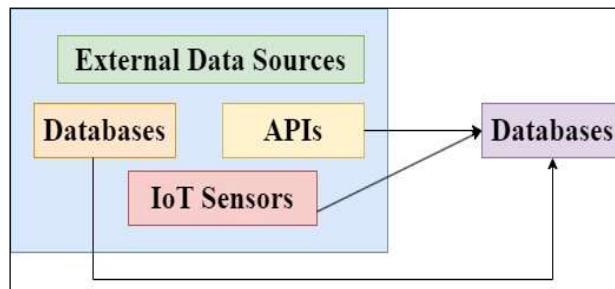


FIGURE 4. Block Diagram of IBM Watson Studio Data Integration Layer

Building and refining machines, learning models to forecast crude oil prices is the focus of the fourth phase. To determine the best method, many methods are tested. These include deep learning models, support vector machines, random forests, and linear regression. To reduce the likelihood of overfitting, these models are cross validated after being trained on historical data. Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) are two performance indicators that are monitored using advanced visualization capabilities in Watson Studio. express the intricacies of the market for crude oil. The architecture shown in Figure 5 delineates the whole pipeline from data acquisition to crude oil price prediction. The process starts with data intake, followed by data cleansing and feature selection. The machine learning model is then trained and assessed inside the cloud environment of Watson Studio. Post-deployment predictions are shown on a real-time dashboard for actionable information.

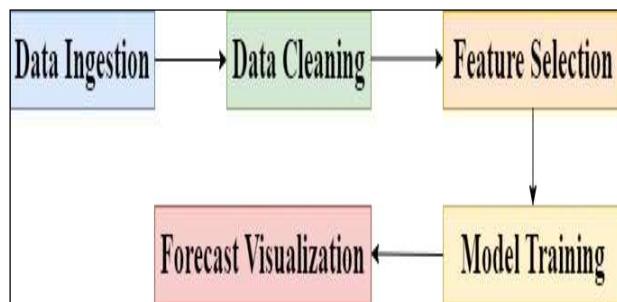


FIGURE 5. Block Diagram Architecture of IBM Watson Studio Forecasting Pipeline

The trained models are put into a real-time prediction setting. The scalable deployment made possible by IBM Watson Studio's cloud architecture guarantees that the system can manage massive amounts of incoming data and provide immediate predictions. APIs that get data from worldwide marketplaces and input it into the forecast pipeline enable real-time price revisions. To keep the models up to date with fresh data, the system also uses feedback loops. No matter how the market moves, these projections will always be correct because of this adaptive system. Use of containerization technologies like Docker and Kubernetes makes the system scalable by enabling effective demand-based resource allocation.

Users will see the outcomes of the predictions via the creation of decision-support tools and interactive dashboards. Crude oil price patterns and prospective market moves may be better understood with the use of visualizations like trend lines, heatmaps, and scenario analysis charts. Stakeholders, such as traders, analysts, and lawmakers, may easily obtain complicated analytical data because of the dashboards' user-friendly design. To assist users in assessing the potential effects of various scenarios on crude oil prices, advanced analytics tools including sensitivity testing and what-if analysis have been included. For instance, to evaluate the ramifications of geopolitical events or interruptions to the supply chain, users might model their simulations. Stakeholders can make better choices, reduce risk, and take advantage of opportunities with the help of these technologies.

RESULTS AND DISCUSSION

Incorporating continual enhancements and closely watching system performance are the focal points of the last stage. Prediction accuracy, system latency, and data processing efficiency are some of the Key Performance Indicators (KPIs) tracked by real-time monitoring technologies. You may set up alerts and notifications to let you know when performance isn't as anticipated. That way, you can fix it right away. To find ways to improve, we gather and evaluate user feedback. To improve the system's capabilities and adjust to changing market needs, this feedback loop is essential. To keep the system cutting edge of crude oil price prediction technology, updates are routinely applied to the predictive models, data sources, and visualization tools. The Figure 6 heatmap shows monthly crude oil market data such as price, supply, demand, economic index, and geopolitical risk. Cell colour intensity indicates indicator value, with deeper hues indicating greater values. This visualization helps stakeholders understand how months-long influences affect crude oil prices. IBM Watson Studio uses machine learning methods to find patterns and connections in these variables. Geopolitical risk index increases frequently lead to increased crude oil prices, as in February and March. Analysts using historical data and influencing variables to predict crude oil prices use heatmaps to discover seasonal patterns, trends, and anomalies.

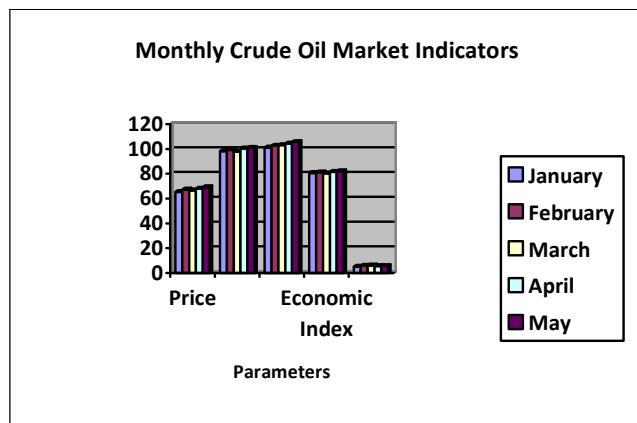


FIGURE 6. Heatmap of Monthly Crude Oil Market Indicators

Crude oil price trends, volatility, demand, and supply data from 2018–2022, as shown in Table 1. Economic and geopolitical factors impact market volatility, which are captured by this qualitative data. For example, in 2020, when the pandemic affected supply and demand throughout the world, prices were low and unpredictable. To feed this historical data into machine learning models, IBM Watson Studio analyses it for recurrent patterns and outliers. Stakeholders may enhance their capacity to predict future patterns in crude oil markets by studying this table, which outlines the elements that influenced these markets in the past. The findings also provide the groundwork for improving prediction skills and evaluating the dependability of models.

TABLE I. Historical Crude Oil Data Analysis

Year	Average Price	Price Volatility	Demand Trend	Supply Trend
2018	Moderate	High	Increasing	Stable
2019	High	Moderate	Stable	Increasing
2020	Low	High	Decreasing	Decreasing
2021	Moderate	Moderate	Increasing	Stable
2022	High	Low	Increasing	Increasing

The suggested system optimizes data flow across analytical stages to reduce latency and ensure smooth operations. The system builds a high-throughput pipeline to process large datasets from structured financial repositories and unstructured textual sources like news feeds and social media. These improvements improve responsiveness in volatile markets like crude oil trading. Figure 7 shows the monthly crude oil price and demand in a bar chart. Each month has two bars representing price and demand. These two variables are shown combined in this chart to compare demand and price trends easily. From January to May, prices and demand rise.

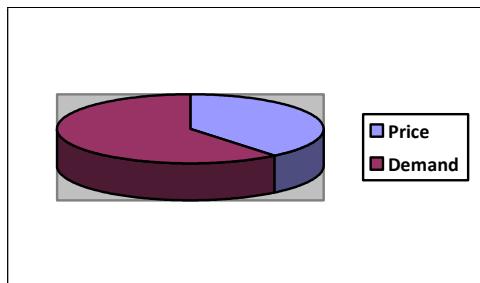


FIGURE 7. Monthly Crude Oil Price and Demand

Global demand, geopolitical events, and technical breakthroughs are key factors that impact crude oil prices, as shown in Table 2. Based on their influence on prices, their predictability, and their changes over time, these

elements are categorised. For instance, the unpredictable and highly influential nature of geopolitical events necessitates the need for real-time analysis using the natural language processing capabilities of IBM Watson Studio.

TABLE II. Factors Influencing Crude Oil Prices

Factor	Impact on Price	Predictability	Data Source	Trend
Global Demand	High	Moderate	Market Reports	Increasing
Geopolitical Events	High	Low	News Feeds	Volatile
Production Levels	High	High	Industry Reports	Increasing
Weather Conditions	Moderate	Low	Climate Data	Stable
Technological Advancements	Low	High	Research Papers	Increasing

The solution goes above and beyond predictive modelling by including a prescriptive analytics layer that provides practical suggestions derived from trend predictions. When the system predicts a spike in prices, it may suggest doing things like modifying inventory, hedging risks, or renegotiating contracts. Figure 8 shows the monthly crude oil price and economic index link throughout time in this line chart. The dual lines show how crude oil prices affect the economic index. An upward trend in the economic index from February to May matches rising crude oil prices, demonstrating a favorable association between economic health and crude oil market stability.

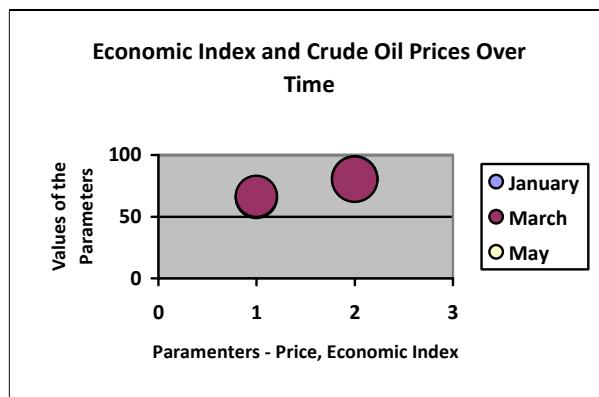


FIGURE 8. Economic Index and Crude Oil Prices Over Time

The performance of machine learning models used to anticipate crude oil prices using IBM Watson Studio is compared in Table 3. Although they demand a lot of processing power, models such as LSTM Neural Networks are perfect for time-series forecasting due to their very high accuracy and precision. Random Forest is well-suited for fast and accurate predictions because it offers balanced performance and economical training timeframes.

TABLE III. Model Performance Metrics

Model	Accuracy	Precision	Recall	Training Time
Linear Regression	Moderate	High	High	Low
Random Forest	High	High	High	Moderate
LSTM Neural Network	Very High	Very High	High	High
XGBoost	High	Moderate	Moderate	Moderate
ARIMA	Moderate	High	Moderate	Low

CONCLUSION

IBM Watson Studio uses machine learning and real-time data analytics to estimate crude oil prices in the cloud. Forecasting accuracy is affected by data volatility, model interpretability, and computing resource management.

Predicting crude oil prices is difficult due to geopolitical events, supply-demand variations, and macroeconomic variables. Integrating data from many sources while minimizing noise is difficult. Historical data dependence, errors in capturing unexpected market swings, and the necessity for regular model upgrades to accommodate changing economic circumstances are limitations. Machine learning algorithms may struggle with unforeseen anomalies, needing more flexibility for predicting dependability. Large-scale deployments are also limited by cloud infrastructure expenses and real-time data processing delay. Future innovations may include AI-driven dynamic modelling, natural language processing for market report sentiment analysis, and blockchain integration for safe data exchange. Improved deep learning frameworks and automated feature selection may improve forecast accuracy. Risk minimization, energy trade optimization, and strategic economic planning benefit from crude oil price forecasts. Scalable and adaptable cloud-based forecasting tools improve energy sector decision-making, financial stability, and efficiency.

REFERENCES

- [1]. A. A. Neloy, S. Alam, R. A. Bindu, and N. J. Moni, 2019, "Machine learning-based health prediction system using IBM Cloud as PaaS," *3rd International Conference on Trends in Electronics and Informatics*, pp. 444-450.
- [2]. B. Ravishankar, and P. Kulkarni, 2020, "When blockchain and AI integrate," *International Conference on Mainstreaming Blockchain Implementation*, pp. 1-4, 2020.
- [3]. D. Demetriou, 2018, "A review of spatial expert systems: Do they still have a role to play?," *Sixth International Conference on Remote Sensing and Geoinformation of the Environment*, **10773**, pp. 148-157.
- [4]. D. N. Dillenberger, P. Novotny, Q. Zhang, P. Jayachandran, H. Gupta, S. Hans, D. Verma, S. Chakraborty, J. J. Thomas, M. M. Walli, and R. Vaculin, 2019, "Blockchain analytics and artificial intelligence," *IBM Journal of Research and Development*, **63**, (2/3), pp. 5:1-5:14,
- [5]. F. F. Petiwala, V. K. Shukla, and S. Vyas, 2021, "IBM Watson: Redefining artificial intelligence through cognitive computing," *Proceedings of International Conference on Machine Intelligence and Data Science Applications: MIDAS 2020*, pp. 173-185.
- [6]. F. Z. El Bouni, T. El Hariri, C. Zouitni, I. Ben Bahva, H. El Aboui, and A. El Ouaazizi, 2021, "Bird image recognition and classification using Watson visual recognition services from IBM Cloud and conventional neural network (CNN)," *International Conference on Electrical, Communication, and Computer Engineering*, pp. 1-6.
- [7]. H. E. Caselli Gismondi and L. V. Urrelo Huiman, 2021, "Multilayer neural networks for predicting academic dropout at the National University of Santa - Peru," *International Symposium on Accreditation of Engineering and Computing Education*, pp. 1-4,
- [8]. H. Khalajzadeh, M. Abdelrazek, J. Grundy, J. Hosking, and Q. He, 2020, "A survey of current end-user data analytics tool support," *IEEE International Congress on Big Data*, pp. 41-48.
- [9]. I. R. Tebepah, 2020, "Digital signal processing for predicting stock prices using IBM Cloud Watson Studio," *SSRG International Journal of Computer Science and Engineering*, **7(1)**, pp. 7-11,
- [10]. K. Ralston, Y. Chen, H. Isah, and F. Zulkernine, 2019, "A voice interactive multilingual student support system using IBM Watson," *18th IEEE International Conference on Machine Learning and Applications*, pp. 1924-1929.
- [11]. L. M. Perniu, A. A. Moșoi, F. Sandu, S. A. Moraru, D. E. Ungureanu, D. M. Kristály, and L. G. Gușeilea, 2019, "Cloud services for an active assisted living platform using wireless sensors and mobile devices," *International Conference on Sensing and Instrumentation in IoT Era*, pp. 1-6.
- [12]. M. I. Ahmed, and G. Kannan, 2021, "Secure end-to-end communications and data analytics in IoT integrated application using IBM Watson IoT platform," *Wireless Personal Communications*, **120(1)**, pp. 153-168.
- [13]. M. Rajeshwari and K. Krishna Prasad, 2020, "IBM Watson industry cognitive education methods," *International Journal of Case Studies in Business, IT, and Education*, **4(1)**, pp. 38-50.
- [14]. R. C. da Silva, M. P. Camargo, M. S. Quessada, A. C. Lopes, J. D. Ernesto, and K. A. da Costa, 2021, "An approach for predicting heart failure rate using IBM Auto AI Service," *International Conference on Computational Intelligence and Knowledge Economy*, pp. 203-207.
- [15]. R. R. Cecil and J. Soares, 2019, "IBM Watson Studio: A platform to transform data to intelligence," *Pharmaceutical Supply Chains-Medicines Shortages*, pp. 183-192.
- [16]. S. G. Shmatko, D. V. Shlaev, and A. A. Sorokin, 2020, "Application of cloud technologies for effective management," *IOP Conference Series: Materials Science and Engineering*, **873(1)**, pp. 1-7.

- [17]. S. Mahfuz, H. Isah, F. Zulkernine, and P. Nicholls, 2018, “Detecting irregular patterns in IoT streaming data for fall detection,” *IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference*, pp. 588-594.
- [18]. T. E. Marshall, and S. L. Lambert, 2018, “Cloud-based intelligent accounting applications: Accounting task automation using IBM Watson cognitive computing,” *Journal of Emerging Technologies in Accounting*, **15(1)**, pp. 199-215,
- [19]. Z. F. Falakh, E. M. Jonemaro, and M. A. Akbar, 2020, “Penerapan kontrol berbasis suara pada game pesawat tempur menggunakan IBM Watson,” *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, **4 (3)**, pp. 798-815.
- [20]. Z. Idrees, Z. Zou, and L. Zheng, 2018, “Edge computing-based IoT architecture for low-cost air pollution monitoring systems: A comprehensive system analysis, design considerations & development,” *Sensors*, **18(9)**, pp. 1-23.