
International Journal of Industrial Engineering
 2023;7(2):65-72.

ISSN: 2456-8449

Received: 21.08.2023 Revised: 05.10.2023 Accepted: 24.10.2023

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors
65

Android Spy Camera System to Enhance Security Using
Super Resolution Images

T Sivakumar1*, K. Mahalakshmi2, P. Shobha Rani3, B. Maruthu Kannan4

1Department of Computer Science and Engineering, KPR Institute of Engineering and Technology, Coimbatore,
Tamil Nadu, India.

2PG & Research Department of Commerce, Thanthai Hans Roever College (Autonomous),
Perambalur, Tamil Nadu, India.

3Department of Computer Science and Engineering, R.M.D. Engineering College, Chennai, Tamil Nadu, India.
4Department of Computer Science and Engineering Sphoorthy Engineering College,

Hyderabad, Telangana, India.

*Corresponding author: Sivakumar.t@kpriet.ac.in

Abstract. Studied the possibility of a "transplantation attack," in which malicious apps could take privacy-harming
images to spy on users without the Android Application Programming Interface (API) auditing being aware of it, based
on the observation that spy-on-users attack by calling Android API would be detected out. Typically, applications will
need to make API calls to the Android Camera Service, a media server process, to snap a photo. To carry out a
transplantation attack, a malicious program must copy the code responsible for taking photos from the media server
process and then use these codes to take photos in its own address spaces, by passing the need for inter-process
communication (IPC). This allows one to avoid being audited by the API. The results of studies show that the
transplanting assault is real. The spy-on-user assault is also made more covert by the transplanting attack. Found that
approximately half of the 69 Smartphones evaluated (produced by eight manufacturers) were vulnerable to the
transplanting attack developed. In addition, the assault may hide from seven different antivirus scanners and the Android
Device Administration APIs, which are utilized for enterprise-level mobile device administration. The transplanting
attack prompted us to find a minor flaw in Android's security architecture and code using a super-resolution algorithm.
The results show the scalability scores for Android versions.

Keywords: Android, Spy on Users, Transportation Attacks, Android Camera Services, Super Resolution Algorithm

INTRODUCTION

The police in Malaysia have been engaged in several cases involving bullying, school absences, and the
disappearance of children, yet these problems persist. Children who are left off at school or on the playground
without adult supervision run the danger of being abducted, bullied, or sexually assaulted. There is a necessity for
parents to watch their kids and even know their child's whereabouts while they are outside. Therefore, the goals
of the proposed systems are to assist parents in keeping tabs on their child's whereabouts in potentially dangerous
situations. This article looked at how to create an Android app for parents called Closed-Circuit Mobile TV
(CCMTV) [1]. Since many parents today are working long hours and can't devote much attention to their children,
this app was designed to fill that gap. Android parental surveillance software is a monitoring tool that records
audio and video and keeps tabs on a child's precise Global Positioning System (GPS) position. Both programs
(parent and child) in this system need to be run when connected to the internet. To function as spying software
that relies on Google API but doesn't need rooting, it is an Android development project that takes advantage of
the access permissions of Android devices [2].

The top five parental control apps of 2019 served as the basis for research of comparable monitoring
applications to identify areas for improvement. Firebase is being used as the server in a client-server architectural
setup, with the client acting as both the parent and the child. Live streaming is another feature of this system that
depends on the media server. This system was designed using structured evolutionary prototyping with increments
approach, and the only necessary hardware is an Android smartphone and laptop. The creation of these
applications was utilizing Android Studio platforms. Parental supervision over their child's Smartphone use is
limited to passive, covert surveillance only [3]. It is becoming more common for tiny covert surveillance cameras
to be placed in sensitive spots like hotels and toilets. Due to their modest size, these concealed cameras are readily

International Journal of Industrial Engineering
 2023;7(2):65-72.

ISSN: 2456-8449

66

available for purchase and are almost impossible to detect with the human eye. Current methods for detecting
these cameras are insufficient since they rely on expensive and niche technology and have poor detection rates.
Studies of the wireless traffic generated by covert cameras have been proposed in recent scholarly publications.
These solutions, however, are similarly restricted since they presume wireless video streaming while only being
able to identify the existence of the concealed camera and not their positions.

Using the times-of-flight (ToF) sensors found in inexpensive Smartphones, introduce a revolutionary
concealed camera detection and localization method. Implement a mobile app that sends out laser signals from
the ToF sensors and then utilizes computer vision and Machine Learning (ML) to track down the specific
reflection captured by covert cameras. Extensive real-world trials with 379 people were conducted to assess and
find that it has an 88.9% success rate in detecting concealed cameras, whereas the success rate for using simply
one's naked eye is only 46.0% [4]. Consumer mobile spyware applications secretly track a user's movements and
broadcast that data over the internet so that remote monitoring may be carried out. So-called "stalker ware"
applications expose a far greater spectrum of victims to intrusive surveillance since they are mass-marketed to
customers at retail, unlike theoretically identical apps employed for state espionage. The market for such
applications has grown to the point where dozens of rivals may thrive, with some providers apparently keeping
tabs on hundreds of thousands of mobile devices. While the academic world is aware of the existence of such
applications, knowledge of how they work is still patchy at best [5].

This paper provides an in-depth technical examination of 14 separate popular mobile spyware programs
targeting Android phones. Catalog the numerous methods of tracking user actions (pictures, texts, live microphone
access) via the inventive use of Android APIs. Also, uncover previously unreported techniques used by these
applications for evading detection and establishing a persistent presence. Also, keep track of the safety precautions
each program takes to guard its users' personal information and reveal several shortcomings on the side of spyware
providers (such as private information being sent in the open or kept in an unencrypted cloud) [6]. Massive privacy
concerns have been brought to light using hidden cameras in public spaces, including motels, hotels, homestays
(i.e., Airbnb), and bathrooms. Wifi spy cameras are widely employed by many opponents due to their cheap cost,
ease of installation, and small size. Most research has shown that detecting wireless cameras using video traffic
analysis is insufficient to avoid privacy intrusions and that additional synchronous data from external sensors or
stimulus devices is necessary to prove the user's movements. Users experience discomfort, and more time and
effort are needed to adjust to such supplements. In this research, we offer DeepDeSpy, a system that can identify
the recording of spy cameras with zero input from the users. The goal is to see whether the user's motions are
being recorded by the wireless camera by analyzing the channel state information (CSI) and the camera's network
traffic.

Because of this, it might be difficult to identify motion in a massive quantity of CSI data in real time. To solve
this issue, use the deep learning techniques of convolution neural networks (CNNs) and bidirectional long short-
term memory networks (BiLSTMs). By automatically extracting significant characteristics from the sequential
raw CSI data, quick and accurate detection is made possible by such synergistic CNNs and BiLSTM deep learning
models. DeepDeSpy was tested in real-world circumstances (including a range of room sizes and user motions)
to confirm its viability and provide a smooth transition from theory to practice. Across a variety of real-world
scenarios, accuracy averaged about 96%, peaking at 98.9% during vigorous exercise in a big space. Real-time
applications are feasible because of the capability of quick detections on Smartphone within just a one-second
reaction time [7]. The problem statement is discussed below. Discreet and effective monitoring solutions are in
high demand in the field of security and surveillance. Developing a Super Resolution Algorithm–integrated
Android Spy Camera System to enhance security is a matter of concern here. We need to apply sophisticated
technologies to fix existing surveillance systems that have problems with low-resolution photography, lack of
discretion, and inefficient data processing. It is difficult to acquire and identify important features in surveillance
films with conventional spy cameras due to the low-resolution pictures they typically create. The surveillance
system's ability to detect and react to security threats might be hindered by poor picture quality. There can be lags
in recording, sending, and analyzing video due to inadequate processing of surveillance data on Android devices.

Missed chances to identify and react to security events in real time might be caused by inefficient data
processing. It may be difficult to extract useful information from recorded videos using older surveillance systems
due to a lack of sophisticated picture enhancement capabilities. The clarity and detail of surveillance photography
may be greatly enhanced by applying a Super Resolution Algorithm to the photos. Improved picture quality with
the use of a Super Resolution Algorithm is essential for improved object, person, or activity recognition in

International Journal of Industrial Engineering
 2023;7(2):65-72.

ISSN: 2456-8449

67

surveillance film. The real test will be in getting this algorithm to work flawlessly with an Android-based spy
camera system without sacrificing speed. To avoid unwanted access or interception of critical information, it is
vital to ensure the safe transfer of surveillance data from the Android device to a central monitoring system. The
project's goal is to increase overall security measures by developing an Android spy camera system that is
strengthened with a super resolution algorithm. This system will solve these critical difficulties and deliver a
discreet, high-resolution, and efficient surveillance solution. Improving the quality of recorded images, making
sure monitoring is happening in real time, and optimizing resource utilization are all parts of this process for
effective threat identification and response. The following are the contributions.

Developing and deploying a Super Resolution Algorithm-based Android Spy Camera System may greatly
improve security measures in a range of contexts. Major benefits to productivity from such a system include the
following: Surveillance video now has better picture quality thanks to the use of a Super Resolution Algorithm.
Security surveillance is made more effective with higher-quality images since people, objects, and actions can be
more accurately identified. With its stealthy form, the Android Spy Camera System can fit in with any setting,
allowing for covert and subtle observation. The technology may be used in situations when overt monitoring
would not be feasible or successful because of its enhanced discreteness. Prompt identification and reaction to
security issues are made possible by the system's real-time monitoring of acquired video. To better handle security
issues as they emerge, the system may instantly create warnings based on established parameters. By producing
sharper and more detailed pictures, the Super Resolution Algorithm helps security staff see possible dangers more
precisely, which in turn leads to better threat identification. Improved picture quality helps spot important features
that low-resolution surveillance systems could overlook. To prevent unauthorized access or interception of
surveillance data, the system employs encryption technologies to prioritize safe data transfer. Ensuring the
integrity and secrecy of the acquired video during transmission to a central monitoring system is the primary goal
of secure data transfer. Security staff can make better judgments with clearer images, reducing the chance of
misinterpretation, thanks to the Super Resolution Algorithm's enhanced picture quality and powerful analytics,
which help to reduce false alarms. Put simply, the Android Spy Camera System, which has been upgraded with
a Super Resolution Algorithm, helps to tighten security by offering covert, high-quality monitoring in real-time.
All these improvements make conventional surveillance systems more effective and provide guards with better
means of detecting and responding to threats.

The following section will be a survey discussed in section 2, and the proposed system using the Super-
resolution algorithm for the Android spy camera system will be discussed in section 3. Then, the results and
discussion for the given dataset are discussed to enhance security in section 4. Finally, the conclusion provides
the overall performance of the Android spy camera system and future work.

LITERATURE SURVEY

There is no denying the importance of Internet of Things (IoT) technology to daily life. Smartwatches,
refrigerators, lights, and locks are just a few examples of the many ways that technology has improved daily lives.
Smartphone applications, which are becoming more popular, are often paired with such devices for the benefit of
easier monitoring and administration and are sometimes even necessary to run the device. However, installing and
using such applications may increase the IoT device's own attack surface, leaving the user vulnerable to security
and privacy issues. Therefore, a crucial issue emerges: do these programs restrict themselves to the bare minimum,
and are they also safe against commonly exploited vulnerabilities and flaws? [8]. To address the issue, this paper
analyzes the top 40 Android applications in six different popular categories of IoT devices. After carefully
connecting each app with actual IoT devices, do a comprehensive static analysis on all of them and a dynamic
analysis on almost half of them. Trackers manifest data, shared software, and other concerns are only a few
examples of the many dimensions over which the gathered findings extend. The brief response to the presented
question is that a wide variety of security and privacy vulnerabilities continue to plague most of such applications,
which, in turn, represents the overall tendency in this ecosystem [9].

 Android as an operating system is currently progressively being implemented in industrial information
systems, notably with cyber-physical systems (CPS). As a result, there is a growing number of polymorphic and
metamorphic malicious programs that target Android devices, putting them on the front lines of managing
security-related data and executing sensitive activities. More precise detection and monitoring of sensitive
Android app activities is crucial to the safety of CPS and IoT devices using Android because of the prevalence of
malware threats like these. However, because of limitations in the Android security and privacy paradigm,

International Journal of Industrial Engineering
 2023;7(2):65-72.

ISSN: 2456-8449

68

enabling dynamic app activity tracking and identification on actual CPS is difficult.This essay explores how recent
developments in deep learning could provide a more precise solution to this security issue. This paper presents a
deep learning engine for detecting malicious app activity by analyzing system-wide parameters like free storage
and network traffic volume and categorizing them using deep neural networks trained on the Encoders and
ResNets models. Meanwhile, sparse learning is employed to decrease the number of valid parameters in the trained
neural networks, which is useful for dealing with the resource constraints of conventional CPS and IoT devices.
Despite the possibility of overlap between background noise and the intended behaviors, evaluations reveal that
the suggested model is superior to a set of predefined baselines on time series categorization [10].

Logic bombs are a common technique used to conceal malicious behavior during dynamic test campaigns by
delaying the execution of harmful operations until a predetermined set of circumstances has been met. There is
still no clear solution in the literature for neutralizing logic bombs. As a first step in logic bomb triage, I advise
looking into Suspicious Hidden Sensitive Operations (SHSOs) in this study. To find SHSOs, which are believed
to be logic bomb implementations, creates a unique hybrid method that combines static analysis with anomaly
detection approaches. Difuzer, by combining an instrumentation engine with a study of the flow of data across
procedures, can pinpoint potential SHSO entrance locations. The SHSOs are then characterized by characteristics
extracted from the triggers and an unsupervised learning model for identifying aberrant triggers is implemented
using One-Class Support Vector Machine (SVM). Conduct an evaluation of the prototype and demonstrate that it
is 99.02% accurate in detecting SHSOs, of which 29.7% are logic bombs. By exposing more logic bombs and
producing fewer false positives in about an order of magnitudes less time, Difuzer exceeds the state-of-the-art.
Give out all the items to the public [11].

Unauthorized sensing and surveillance of routines are real concerns in this age of ubiquitous IoT devices. A
major privacy concern/threat is the disclosure of photographs captured by wireless spy cameras in private areas,
including hotels, airports, public bathrooms, and public showers. Proposed a Spy Camera Finders (SCamF) that
utilizes pervasive Smartphones to identify and localize wireless spy cameras by analysis of encrypted wifi network
data, mitigating/addressing this important topic. SCamF accurately verifies the presence of wireless cameras on
wifi networks and determines whether they are recording users' activities by characterizing the network traffic
pattern of the wireless camera and then reconstructing encoded video frame size from encrypted traffic [12]. By
evaluating the sizes of reconstructed video frames, SCamF can also correctly pinpoint the location of hidden
cameras. Using a real-world testbed with twenty different kinds of wireless cameras, have successfully built
SCamF on AndroidsSmartphone and analyzed its performances. Based on experiments, SCamF is able to (1)
correctly categorize wireless cameras with an accuracy of 0.98; (2) detect spy cameras among the classified
wireless cameras with a true positive rate (TPR) of 0.97; (3) incur low false positive rates (FPRs) of 0 and 0.031
for non-camera device and camera not recording the users' activities, respectively; (4) locates spy cameras with
centimeters-level distances error [13].

There has been a lot of worry about the security and safety concerns with doors and their construction, which
is ironic given that doors are supposed to protect people, places, and property and must be shut when not in use
to have a protected house. Most doors nowadays use mechanical locks and keys that are insufficient to prevent
access even to authorized personnel. This security solution, a smart door lock system with built-in spy cameras,
may be used to monitor who is at the door and make sure that the visitor is safe before allowing entry. The door
locking and unlocking procedure is implemented by using an ESP-32 (Artificial Intelligence (AI)-enabled
interfaced with an Arduino microcontrollerATMEGA328P [14]. Using Global System for Mobile Communication
(GSM) technology, a surveillance camera, an alarm system, and a web app, developed and deployed a locking
system for doors. The device employs a camera for spying on things, and it sends the footage to a phone or
computer over wifi, so you may lock and unlock the door from anywhere you happen to be. The door unlocks,
and the authorized user is granted entry when the system detects a call from a registered mobile phone, a command
from its mobile apps, or the input of the Internet Protocol (IP) addresses and passwords. After a short delay (a few
microseconds), the front door locks to keep out intruders. Once again, the system will ask for one of the two
methods to provide access whenever a new visitor comes. The system was created through real-time testing, where
it performed comparably to similar works that didn't use the methodologies [15].

PROPOSED SYSTEM

Camera Service offers the functionality of utilizing the camera devices to, e.g., capture a photo, record a video,
etc. Between versions 2. x and 4. x, Camera Service has a drastically altered process. Here, takes a closer look at

International Journal of Industrial Engineering
 2023;7(2):65-72.

ISSN: 2456-8449

69

how Android 4. 's Camera Service works since this version of Android has risen to prominence in recent months,
according to a study conducted by Google. The Android operating system is built on top of Linux. Daemon
processes, the media server process, the system server process, the service manager process, and the Android
application processes are all examples of processes (address spaces) that make up the Android system. Any app
that makes use of the Camera Service is a client. The client process is organized in a normal five-layer stack, from
the application layers to the framework layers, to the Android Applications Runtime layers, to the hardware abstract
layer (HAL), and to the Linux kernel layer. Java is used for both the Application and Framework layers. For running
Java programs, the Runtime layers provide Dalvik Virtual Machines (DVM). This layer also contains various native
libraries to take care of the IPC demands. Since the client processes do not need to communicate with the Camera
devices directly, there is no such code present in the HAL layer.

Since the Linux kernels layer's memory page containing the kernel codes is shared by all processes, the camera
driver code is also located in the client address spaces. The server media process runs in its native environment.
The media server process does not need DVM since native processes do not include Java code. The media server
operation simply consists of three stages. System libraries written in native codes (so libraries) are the only contents
of the top layer, which is why they are referred to as the systems library layers. The Library System layers, so
libraries are used to process a client's request, send it on to the HAL layer, get the answer, and send it back to the
client. There are. So, libraries are on the HAL layer as well. Different from the Systems Library layers, libraries on
these layers are utilized to interact with the camera drivers. Most of the tasks for the media server are being handled
by the HAL layer. The camera operator is in the Linux kernels layer of the media server process. Before a client
may exchange data with the Camera Service via binder IPC, it must first contact the service management process
to get the Camera Service's reference.

The service manager is a native process that keeps track of all the system services that have been registered and
the references to those services. It is a standard IPC operation to ask the service manager for a reference to the
Camera Service, but this is not included in the diagram. Once the Camera Service reference has been received, the
following is a high-level description of how the Camera Service is meant to be used. The client must establish a
connection with the Camera Service before it can do any camera-related tasks. Once the connection is made, the
client has access to all features of the Camera Service. Figure 1 shows the system architecture of the proposed
system.

FIGURE 1. System architecture of the proposed system

The principle of super-resolutions is to create a high-resolution picture or series of pictures by combining many
low-resolution (noisy) photos of a scene. Therefore, it uses a collection of lower-quality observed photos to try to
recreate the original scene image with higher resolution. The standard method treats the low-resolution pictures as
if they were produced by re-sampling a high-resolution original. After that, using the input photos and the imaging
models to resample will provide the low-resolution observed images; the aim is to recover the high-resolution
images. Therefore, super-resolutions rely heavily on an accurate imaging model, and further degradation of the
picture might result from inaccurate modeling, for example, of motion. To become connected, the clients first access
an Android API from its Java codes. The CONNECT binder request is sent from the Android API to the media

Android
Device
IPcamera

IP camera
adapter

NI-IMAQdx
via DirectShow

MJPEG
Viewer

MJPEG
Streamer

Vision
development
module

LabVIEW

Other MJPEG-
compatible
programs

International Journal of Industrial Engineering
 2023;7(2):65-72.

ISSN: 2456-8449

70

server process using a system library (lib-camera clients). The Camera Service in the System Library layers extracts
the request types from the binder data structures when they are received by the media server process. The Camera
Service component will defer to the system server process for authorization if the requested action is a CONNECT.
Go over how to utilize this to do an API audit later. The camera hardware interface in the System Library layer will
be called by Camera Services when the client has successfully passed the permission check.

To communicate with the camera drivers in the Linux kernels, the Camera Hardware Interface routines will
make calls to the HAL layers functions. A notifications thread in the HAL layer awaits camera events like "Camera
has focused" or "focus has moved," among others. The camera driver will notify the thread when the camera is
done taking a photo. The picture data will be sent back to the System Library layers of the media server processes
via the callback routines when the notification thread gets the event. The Camera Service component may provide
the image data to the client process via Binders IPC after it has been compressed (by the camera drivers) into a
specific image format (for example, jpeg). After the Camera Client in the Runtime layer of the client’s process has
received the picture data, it will be sent to the Framework layer. The picture data is then shown on the screen after
being sent by the Framework layer. In the Application layer, programmers have the option of saving the image data
as an image file. Android's APIs allow developers to access the phone's hardware (such as the camera), wifi and
networks, user data, and settings. There are restricted access points for certain of the APIs.

These APIs may be found in a framework's source codes or in systems libraries. When a protected API is called,
the implementation codes of the API will make a request to the system server processes to validate the caller's
authorization. Binder IPC is used to communicate with the Package Manager, thread of the system server process
and complete the request. This thread has access to the API being called, the API being called the thread making
the API request. So, this thread is useful for auditing Android APIs. The audit log also allows for intrusion detection.
The media server process in Camera Service will initiate a request to the Package Manager thread whenever a
request to take a photo is made to ensure that the caller has the necessary permission to do so. A review of the
photo-taking API may be performed in the meantime.

RESULTS AND DISCUSSIONS

Assess the transplanting assault from the perspectives of real-world success, Antivirus (AV) detection rate, and
Android Device Administration. Test the malicious software on real-world devices running a variety of Android
versions to gauge the efficacy of the transplanting attack. Select eight manufacturers, 69 models, and seven releases
of Android. Fourteen of the phones come from fellow researchers, while the other sixty-two come from the Baidu
app test platform. Seven of the 62 phones are compatible with some of the 14 since they share the same model and
Android version. So, the total number of various phones is 69. All phones used in the app testing process on the
Baidu platform are actual phones and not simulators. Put the malicious software through its paces in the lab,
capturing pictures, concealing the preview pane, and emailing them. Gave the rogue software permission to transfer
the hidden photos to another device. Count the assault as successful if the target can access and see the attached
images. The captured pictures may be stills from a video sequence, or they might be captured by several different
cameras. There must be a common reference frame to which these pictures are mapped. This action is known as
registration. After the aligned composite picture is ready, a specific area may be processed using the super-
resolution technique. Creating a suitable forward picture model and performing precise alignment, also known as
registration, are the two most important steps in achieving effective super-resolution. The spy camera dataset is
shown in Table 1.

TABLE 1. Spy Camera System Dataset

Parameter Value

Dataset Title Android Spyware

Data Type PCAP files, CSV files

Data class Multivariate

Data source Android-based spyware tools

 If the malicious program can take a photo, and the wifi connection is active, the image will always be sent.
Because we do not have physical access to the phones on the Baidu test platform, we simply assess the camera's

International Journal of Industrial Engineering
 2023;7(2):65-72.

ISSN: 2456-8449

71

functioning. Allow the malicious program to display the preview window for testing purposes. Therefore,
checking if a phone's screenshot (produced by the test platforms) includes the preview windows can verify whether
the image capture is successful or not. The transplanting attack is a complete success on phones running 4.1.1
from 5 different manufacturers. For version 4.1.2 phones from 5 suppliers, the success percentage of transplanting
attacks is 75%. Also, track the vendor-by-vendor success rate. The total success rate is 46.38 percent, based on 69
phones. That implies this spy-on-user hack might affect almost half of all phones on the globe. The experiments
on version 4.0.3 are quite confusing, so I examined this version's photo-capturing method and found there are no
differences between this version and the previous 4. x versions. Baidu offers access to all 4.0.3 mobile devices.
We are unable to determine the cause of failure for phones running 4.0.3 and 4.2.1 since Baidu's test platform
does not provide us with the necessary failure information (adb log). However, this is a side advantage of
personalization according to the failures caused by the phones utilized by lab mates, which would be studied as
follows. Figure 2 shows the average search interest, and Figure 3 shows the vulnerability scale scores.

FIGURE 2. Average search interest

 FIGURE 3. Vulnerability scale scores

 Six of the phones failed to survive the transplant onslaught. Each phone has its own unique list of potential
causes of failure. To determine what went wrong with each device, collect the adb log of a failed photo capture
from both the stock Camera app and the malicious software. The results are summed up here. Since Google Galaxy
Nexus is an AOSP (Android Open-Source Project)-compatible device, examine its photo-taking process source
code. Discover that the media server process opens the /dev/proc user device, which is part of the drmrpc group,
before it opens the camera device. Applications are unable to get the drmrpc group ID, in contrast to the camera
group ID. Therefore, applications are unable to access the /dev/proc user device because they cannot join the
drmrpc group. This means the strike is useless. For the Samsung SHV-E160S, the primary distinction between
the Camera apps and the malicious software is whether the app is "unable to find matching camera info" for the
provided camera ID.

0

5

10

15

20

25

30

2017 2018 2019 2020 2021 2022

S
ea

rc
h

in
te

re
st

 (o
u

t
of

 1
00

)

Year

ios update issues

Android update issues

7.6

6.6

5.8

5.7

3.9

3.5

3.3

2.3

Android 7

Android 8

Android 10

Android 6

Android 9

Android 11

Android 5

Android 12

Vulnerability scale

International Journal of Industrial Engineering
 2023;7(2):65-72.

ISSN: 2456-8449

72

CONCLUSIONS

This work presents the transplanting attack, an exploit that circumvents Android's API auditing to allow a
malicious app to secretly collect (perhaps privacy-harming) images whenever it likes. The transplanting assault,
when being implemented to accomplish the spies-on-users purpose, results in the stealthiest and unobserved image
capturing. Test many forms of assault in a controlled environment. Of the 69 Smartphone’s (from 8 different
manufacturers) examined, 46.38 percent allowed the transplanting assault to proceed. The transplanting attack
also reveals a minor flaw in the Android system's design or implementation. The latest research shows that
although the issue has been addressed, most manufacturers still have not done so. Consequently, the malicious
app is unable to access the camera, and an "operation not permitted" error of -1 is returned. Since we do not have
access to the phone's source code, I can only speculate that the manufacturer may have changed the procedure for
accessing the camera.

REFERENCES

[1]. M. N. Abdullah, and N. Baidilah, 2022, “CCMTV: Android parental spying apps utilizing child’s phone
camera and microphone,” In AIP Conference Proceedings, 2617(1), pp. 1-5.

[2]. S. Sami, S.R. Tan, B. Sun, and J. Han, 2021, “Lapd: Hidden spy camera detection using smartphone
time-of-flight sensors,” In Proceedings of the 19th Conference on Embedded Networked Sensor Systems,
pp. 288-301.

[3]. E. Liu, S. Rao, S. Havron, G. Ho, S. Savage, G. M. Voelker, and D. McCoy, 2023, “No Privacy Among
Spies: Assessing the Functionality and Insecurity of Consumer Android Spyware Apps,” Proceedings
on Privacy Enhancing Technologies, 1, pp. 1-8.

[4]. D. Dao, M. Salman, and Y. Noh, 2021, “DeepDeSpy: A Deep Learning-Based Wireless Spy Camera
Detection System,” IEEE Access, 9, pp. 145486-145497.

[5]. E. Chatzoglou, G. Kambourakis, and C. Smiliotopoulos, 2022, “Let the cat out of the bag: Popular
android iot apps under security scrutiny,” Sensors, 22 (2), pp. 1-41.

[6]. H. Ma, J. Tian, K. Qiu, D. Lo, D. Gao, D. Wu, C. Jia, and T. Baker, 2020, “Deep-learning–based app
sensitive behavior surveillance for Android powered cyber–physical systems,” IEEE Transactions on
Industrial Informatics, 17(8), pp. 5840-5850.

[7]. J. Samhi, L. Li, T.F. Bissyandé, and J. Klein, 2022, “Difuzer: Uncovering suspicious hidden sensitive
operations in android apps,” In Proceedings of the 44th International Conference on Software
Engineering, pp. 723-735.

[8]. J. Heo, S. Gil, Y. Jung, J. Kim, D. Kim, W. Park, Y. Kim, K.G. Shin, and CH. Lee, 2022, “Are There
Wireless Hidden Cameras Spying on Me?” In Proceedings of the 38th Annual Computer Security
Applications Conference, pp. 714-726.

[9]. A.S. Falohun, B.O. Makinde, O.A. Adegbola, T.H. Akin-Olayemi, A.E. Adeyege, A.E. Adeosun, and
B.D. Akande, 2021, “Design and construction of a smart door lock with an embedded SPY-camera,”
Journal of Multidisplinary Engineering Science and Technology, 8(7), pp. 14521-14528.

[10]. K. Kollnig, A. Shuba, R. Binns, M. Van Kleek, and N. Shadbolt, 2021, “Are iPhones really better for
privacy? comparative study of iOS and Android apps,” proceedings on privacy Enhancing Technologies,
pp. 1-19.

[11]. K. Hariharan, R. R. Jain, A. Prasad, M. Sharma, P. Yadav, S.S. Poorna, and K. Anuraj, 2021, “A
Comprehensive Study Toward Women Safety Using Machine Learning Along with Android App
Development,” In Sustainable Communication Networks and Application: Proceedings, Springer
Singapore, pp. 321-330.

[12]. M. Suleman, T.R. Soomro, T.M. Ghazal, and M. Alshurideh, 2021, “Combating against potentially
harmful mobile apps,” In the International Conference on Artificial Intelligence and Computer Vision.
Cham: Springer International Publishing, pp. 154-173.

[13]. M. Hatamian, S. Wairimu, N. Momen, and L. Fritsch, 2021, “A privacy and security analysis of early-
deployed COVID-19 contact tracing Android apps,” Empirical Software Engineering, 26, pp. 1-51.

[14]. F. Maasmi, M. Morcos, H. Al Hamadi, and E. Damiani, 2021, “Identifying applications' state via system
calls activity: a pipeline approach,” In 28th IEEE International Conference on Electronics, Circuits, and
Systems, pp. 1-6.

[15]. S. Garg, and N. Baliyan, 2021, “Comparative analysis of Android and iOS from a security viewpoint,”
Computer Science Review, 40, pp. 1-7.

