

Machine Learning Based Animal Health Care Management System

D. Rukmani Devi^{1*}, R. Poojitha¹, Sai Meghana M¹, Shreya Ravindran¹

¹Department of Electronics and Communication Engineering, R.M.D. Engineering College, Chennai, Tamil Nadu, India

*Corresponding author: rukmani.ece@rmd.ac.in

Abstract: The zoo is a nearby structure that houses a few exotic or wild animals within a fence. A zoo's principal mission is to provide educational and animal protection services, as well as public viewing and enjoyment. The administrative and animal care facilities of the zoo are open all year. Its key tasks include, among other things, convenience, upbringing, medical treatment, and clinical consideration. Because there are hundreds, thousands, or even tens of thousands of creatures in the zoo with different body shapes and qualities that must be properly focused on and cared for, creature chairmen should be skilled in various devices and maintain constant control of the state, all things being equal, resulting in the creature heads' heavy responsibilities and the zoo's massive operating costs. As a result, it's vital to design techniques for reducing the task of creature heads while maintaining monitoring the animals' present situation and cutting creature care and executive costs. In light of the Internet of Things (IoT) and artificial reasoning, this study proposes an enhancement design for the intelligent creature the board architecture (AI). Its major purpose is to use IoT and AI to automate a few tiresome aspects of animal care in order to assist creature chairmen in dealing with and overseeing them more attentively.

Keywords: Animal care, Safety, IoT, AI, Health care.

INTRODUCTION

Zoos may be found in many major cities across the world. A zoo is a facility that houses a few unique or wild animals [1]. The main purpose of the foundation is to give educational opportunities and animal preservation, as well as public survey and entertainment [2]. According to the Association of Zoos and Aquariums, this is more than the annual involvement of the NFL, NBA, NHL, and MLB. Similarly, according to the study results, 93 percent of respondents claimed their family enjoys visiting zoos and aquariums to watch animals [3]. 94 percent believe that zoos and aquariums teach children how to protect animals and the environments in which they live; 79 percent of organizations that help zoos and aquariums conserve wild animals are more satisfied, and 66 percent of respondents are more likely to purchase goods and services from these organizations [4].

However, before visiting these zoos, we should assess the animal care and the board that regulates them [5]. Various zoos may have hundreds, thousands, or even tens of thousands of creatures with different body shapes and attributes that should be really focused on and made due to, creature managers should be capable in devices and constant control the state of all creatures makes a heavy responsibility for creature chairmen and a huge working cost for the zoo [6]. As a consequence, the combination of current data and correspondence innovation will help to solve this problem [7]. Because of IoT innovation, data innovation items for the consideration of creature felines and canines that are closest to people are now available [8].

A lucky Tag smart choker with the capacity to follow pet activities and check on their well-being, as well as the ability to be absent and look, was demonstrated [9]. By studying their dogs' drawn-out patterns, Lucky Tag enables pet owners to spot changes in mobility early and seek professional medical care. Recently, artificial intelligence (AI) frameworks have been used to decipher animal behavior through picture recognition, improve creature support environments, and realistically monitor animal health [10].

LITERATURE SURVEY

The disappearance of Indians is a rare circumstance. These animals, particularly lost canines, have grown into their own class, thriving in Indian cities, overcoming all barriers, and living with the compassion and assistance of India's tolerant human population. In India, injuring or murdering homeless dogs has been widely condemned by the public [11]. Previously, massive numbers of dogs were slaughtered in order to keep canine populations under control. The fact that this does not work proves its truth. The number of dogs rapidly returns to normal.

This is measured by how easily food may be gotten. The primary objective for canine population management by disinfection is a human government-supported endeavor to protect people from canine bites and rabies [12]. Maiming and anti-rabies (AR) immunization of dogs are two more effective ways for reducing the expanding lost canine population. The Animal Contraceptive Regulations (2001) of the Animal Abuse Prevention Act of 1960 indicated that Indian canines should not be killed or transferred in order to control their population. The worst occurrences for these dogs happen in public, but most people learn to live with them, and many feed and care for them in the city [13].

The government and charitable organizations in India collaborate to fund and implement the ABC-AR program. Positive results have been found in some areas, and this movement has lowered the number of canine chomps while simultaneously lowering the number of dogs. As a result, there is a requirement for a monitoring system that allows the government to keep track of and regulate the number of homeless dogs in a given region. This can aid in the prevention of rabies by reducing the rate of replication.

Several frameworks inspire the core goal of discovering, filtering, and monitoring these homeless animals. In the early 1900s, radars, isotope analyses, and other techniques were employed to track a variety of animals and critters [14]. It occurred at the beginning of the late 1970s, in the same location where photograph checks were utilized to track down a monster. Ideas switched to IoT applications as technology advanced, signaling the emergence of regulatory boards.

Framework for finding pet animals in small communities. As we all know, observing pets in busy metropolitan areas is a difficult chore. Air labels, GPS, and RFID are just a few of the outstanding approaches for dealing with creature identification and observation procedures. It demonstrates that it lacks the necessary level of pet observation and follow-up. These technologies have considerable disadvantages and are highly costly [15]. This study suggests a way for following a pet species through video transmission while using sophisticated learning skills to recognize and organize the object of interest. This framework, however, will become less cost-effective as the number of species increases, and screening open-air homeless creatures will become increasingly challenging [16]. An animal health monitoring system is discussed in [17] with the help of IoT.

PROPOSED SYSTEM

BEACON

Guide is a Bluetooth 4.0 low-energy breakthrough in the form of a small and inconspicuous physical device. We can set it up in various spots across the zoo to send information to phones or equipment inside a given division, allowing us to relay messages to nearby animals. Use the manual to investigate the facts from the animal's belongings in order to organize the animal's activity state and prosperity noticing, as well as to achieve smaller-than-usual arranging, avoid animal catastrophes, and quickly identify animals. Furthermore, animal leaders can operate with cells with relative ease. As the animal chief walks around the animal, the animal's various materials can be jumped out of the animal administrator's cell or equipment, and the data can be continuously returned, allowing the supervisor to instantly appreciate the current animal status and allowing the animal to be feasibly administered. Visitors may also help right away by sharing information about local animals using their own mobile phones or devices. Figure 1 depicts the framework's plan.

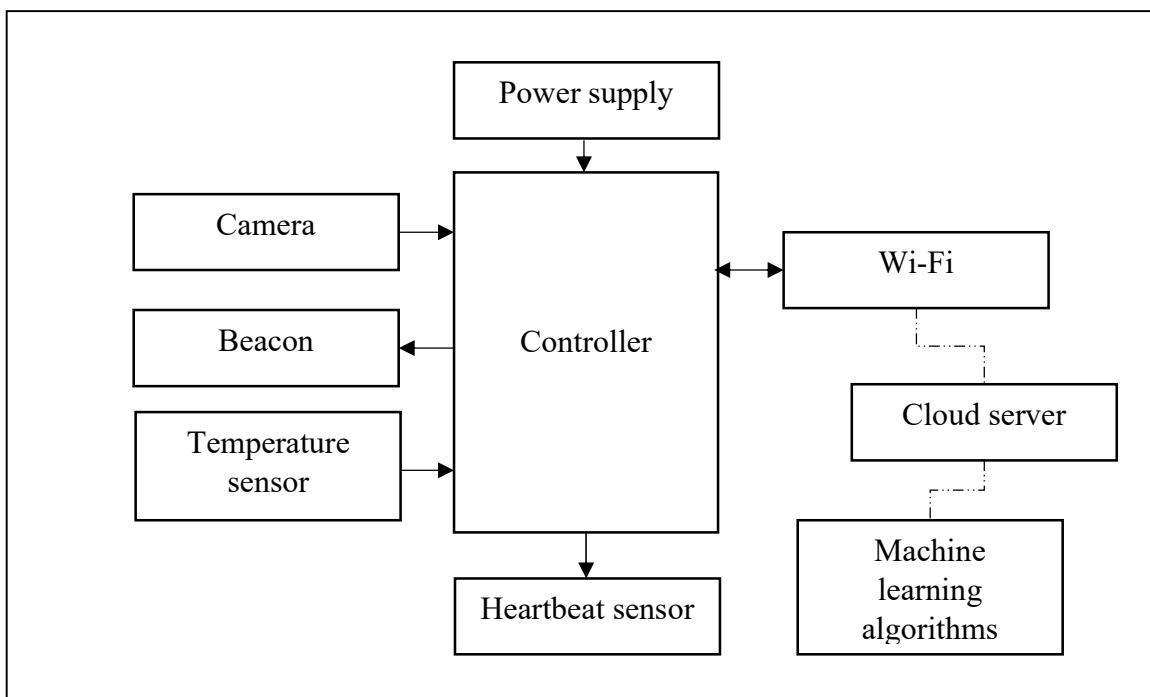
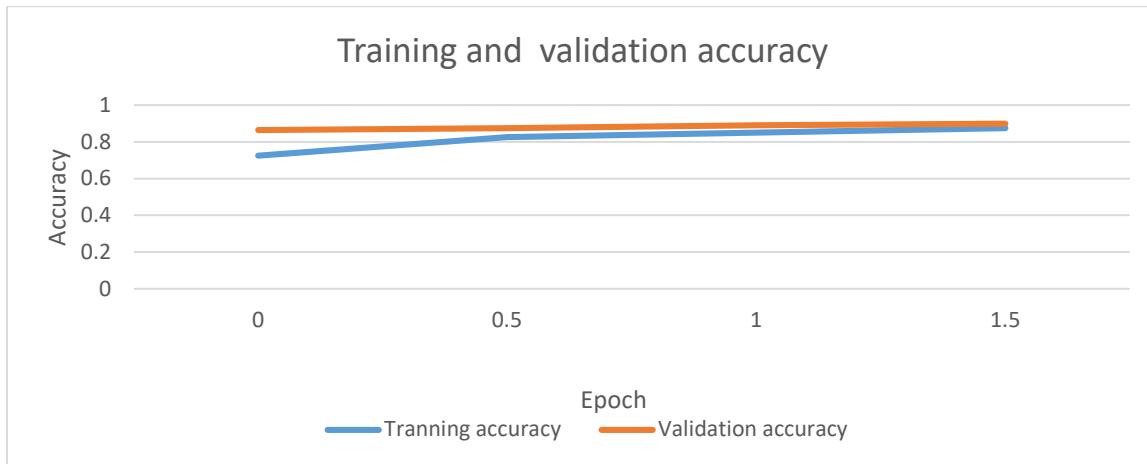


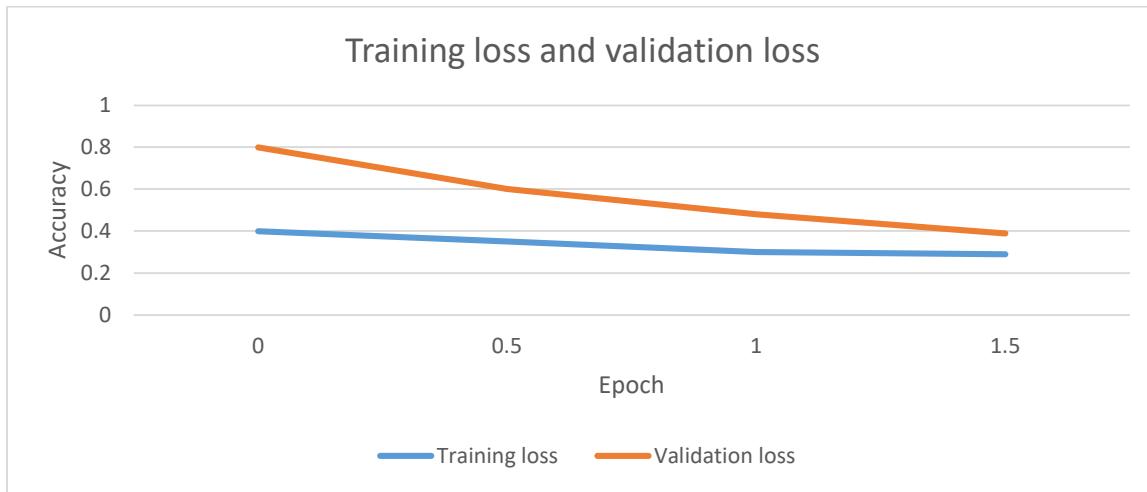
FIGURE 1. Design of the System

We may group the connections in a certain zoo site to form a web relationship for the animal recognition device, and then transfer the detected animal physiological sign and position to a cloud data base for large data and AI analysis. Wi-Fi is a distant area that enables Wi-Fi-enabled contraptions to connect to a network from a variety of far affiliations to at least one associated sector way, questioning the ease of remote connections. The area is used to transmit physiological messages and positions on the animal assessed by equipment in order to achieve the subsequent assessment of the animal activity status and prosperity noticing organization, as well as to separate the animal development proceed in order to understand the animal life affinities. Furthermore, the area might be used as a data transmission vehicle for both back-end data and front-end application stages, allowing animal managers to control all animal conditions in the zoo via mobile phones or other devices.


RESULTS

The primary purpose of this proposed study is to monitor medical issues in cows using explicit sensor technology. Under some conditions, the attraction and supply of dairy products may be accomplished simply by keeping a constant check on their medical condition and ensuring their well-being, as this has a direct impact on the purchasers' strength. Some infections in steers may be expected to progress to suitable lengths. Because sensors are mobile, contagious adverse effects may be easily planned. This is to integrate two existing modules created at various levels of development and innovation into a single stage. Table 1 displays the results of the heartbeat and temperature readings.

TABLE 1. Output Data's


Heartbeat	Temperature
69	32
77	32.42
96	42.37
69	32.67

In this part, we will use a Convolution Neural Network to distinguish between various creature types, which is an incomplete element of the proposed design. To begin, we create a multiclass image classifier, which we then use to categorize the animals in the image outline. Gathering information, which is the initial stage, is the most challenging aspect of any job. The data should be labeled for the proposed design. Kaggle has labeled photos that may be instantly downloaded. The working set has 16496 images, one for each of the six classes.

FIGURE 2. Training and Validation Accuracy

Figure 2 demonstrates the accuracy with which preparation and approval are carried out. It will take time to physically build new names for each classification in the image if the informative collection is not labeled. Another possibility is to create a new mark and rename 100 photographs. Then develop such a classifier and apply it to the image. This causes characterization issues, so it's best to double-check it each time you run it. In this instance, it takes time. Figure 3 demonstrates the mistakes made during preparation and approval.

FIGURE 3. Training Loss and Validation Loss

The preparation dataset contains 85-90 percent of the absolute named information. This information is needed to prepare the system for different sorts of photos. The approval dataset accounts for around 5% to 10% of the overall marked data. This is a test in which machine execution is compared against known marked data. In the test dataset, the other data is arranged in an unlabeled fashion. This information is used to determine how well a computer can

organize data that it has never seen before. Furthermore, as long as the subject you're categorizing is correct, test data can contain downloaded Google photos.

CONCULSION

Zoos may be found in a wide range of big urban regions across the world. The zoo is situated along a divider and houses a few rare or unique animals. The fundamental goal of the institution is to give educational incentives and animal assurance, as well as public auditing and redirection. This study proposes an upgrade plan for the structure of the watchful animal commanders based on IoT and AI, taking into consideration the zoo's thinking and leadership group of animals. This design will be used to generate a signal as well as a WIFI neighborhood regulator.AL, as well as other communication advancements like cloud data bases and distributed calculating. Using these improvements, several inconvenient procedures for caring for animals are mechanized using IoT and AI to encourage animal organizations to consider and control animals, such as determining the interior heat level, demeanor, continuous activity state of animals, general surroundings, and location. This evaluation's structure is presently simply a concept, and there are a lot of areas that require additional thought and update in order to handle the Zoo's concerns.

REFERENCES

- [1]. J. P. T. M. Noordhuizen, and H. J. Welpelo, 1996, "Sustainable improvement of animal health care by systematic quality risk management according to the HACCP concept," *Veterinary quarterly*, **18(4)**, pp.121-126.
- [2]. T. Evans, and N. Chapple, 2002, "The animal health market," *Nature Reviews. Drug Discovery*, **1(12)**, pp.937-938
- [3]. B. Bengtsson, and C. Greko, 2014, "Antibiotic resistance—consequences for animal health, welfare, and food production," *Upsala J. of medical sciences*, **119(2)**, pp.96-102.
- [4]. M. Martin, E. Mathias, and C. M. McCorkle, 2001, *Ethnoveterinary medicine: an annotated bibliography of community animal healthcare*. ITDG publishing,pp. 1-611.
- [5]. B. Saikia, and S. K. Borthakur, 2010, "Use of medicinal plants in animal healthcare-A case study from Gohpur," Assam.
- [6]. B. A. Jadeja, N. K. Odedra, K. M. Solanki, and N. M. Baraiya, 2006, "Indigenous animal healthcare practices in district Porbandar," Gujarat.
- [7]. M. Pearson, and C. Chandler, 2019, "Knowing antimicrobial resistance in practice: a multi-country qualitative study with human and animal healthcare professionals," *Global health action*, **12(sup1)**, pp.1-9.
- [8]. I. Ahmad, A. M. Babitha Rani, A. K. Verma, and M. Maqsood, 2017, "Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition," *Aquaculture Int.*, **25(3)**, pp.1215-1226.
- [9]. A. Pieroni, M. E. Giusti, C. De Pasquale, C. Lenzarini, E. Censorii, M. R. González-Tejero, C. P. Sánchez-Rojas, J. M. Ramiro-Gutiérrez, M. Skoula, C. Johnson, and A. Sarpaki, 2006, "Circum-Mediterranean cultural heritage and medicinal plant uses in traditional animal healthcare: a field survey in eight selected areas within the RUBIA project," *J. of ethnobiology and ethnomedicine*, **2(1)**, pp.1-12.
- [10]. J. P. T. M. Noordhuizen, and H. M. Metz, 2005, "Quality control on dairy farms with emphasis on public health, food safety, animal health and welfare," *Stočarstvo: Časopis zaunapredjenjestočarstva*, **59(1)**, pp.39-55.
- [11]. A. Pandey, and G. Prakash, 2019, "Deduplication with attribute based encryption in E-health care systems," *Int. J. of MC Square Sci. Res.*, **11(4)**, pp.16-24.
- [12]. S. Araya, B. Abera, and M. Giday, 2015, "Study of plants traditionally used in public and animal health management in SehartiSamre District, Southern Tigray, Ethiopia," *J. of ethnobiology and ethnomedicine*, **11(1)**, pp.1-25.
- [13]. M. S. Ali-Shtayeh, R. M. Jamous, and R. M. Jamous, 2016, Traditional Arabic Palestinian ethno veterinary practices in animal health care: a field survey in the West Bank (Palestine). *J. of ethno pharmacology*, **182**, pp.35-49.
- [14]. M. M. Curran, G. Feseha, and D. G. Smith, 2005, "The impact of access to animal health services on donkey health and livelihoods in Ethiopia," *Tropical animal health and production*, **37(1)**, pp.47-65.

- [15]. C. W. Young, V. R. Eidman, and J. K. Reneau, 1985, "Animal health and management and their impact on economic efficiency," *J. of Dairy Science*, **68(6)**, pp.1593-1602.
- [16]. S Murugan, S. Mohan Kumar, and T.R. Ganesh Babu, 2020, "Convolutional Neural Network-based MRI Brain tumor classification system," *Int. J. of MC Square Scientific Res.* **12(3)**, pp. 1-8.
- [17]. P. Sundaramoorthi, P. T. Rajeenamol, and M. V. Anoopkumar, 2020, "Animal Health Monitoring With Missing and Theft Prevention Device Using Wireless Sensor Network And Internet Of Things," *Int. J. Adv. Sig. Img. Sci*, **6(1)**, pp. 38-44.