

Zigbee-Based Real-Time Safety and Maintenance System for Oil and Gas Infrastructure

Ravindra Babu B^{1*}, Mesfin Abebe Haile¹, Daniel Tsegaye Haile¹, Desta Zerihun¹

¹Department of Computer Science and Engineering, Adama Science and Technology University (ASTU), Adama, Ethiopia.

*Corresponding author: ravindra.babu@astu.edu.et

Abstract. Regarding power efficiency and improved oil field monitoring systems, a sensor network-based adaptive control system is designed. The suggested detection system is made up of three layers of detectors: A few kinds of basic sensing devices, such as Biosensor and Heat sensor, were being used for gas health data sensing; our advanced smart sensor nodes, which relate to the second tier sensor, are designed primarily for a gas well's statistics elementary handling, primary problem alert system or identification, pretty standard storage systems or acknowledgement, data or status transfer of data up to the third sensing element, data or status transmitting between sensing devices, and coherence detection. Our evolved application control facilities with an integrated data set, i.e., the higher-level detector, are intended for thousands of oil wells information storage or managerial staff, information processing, failure sensing, alert system or identification, and stroke-adjustment function communication down to sensing devices for the economic energy system.

Keywords: Oil Monitoring System, Natural gas maintenance system, IoT, Zigbee, Real Time.

INTRODUCTION

Oil and natural gas are the most common fuels used worldwide. They are found in many forms, from the crude oil we use in our cars and trucks to the natural gas we use for heating, cooking, and electricity [1]. They can also be found in the form of crude oil and natural gas liquids, such as gasoline, diesel fuel, and fuel oil. Crude oil is a liquid made up of a complex mixture of hydrocarbons that occurs naturally in the Earth's crust [2]. The United States is a world leader in oil and natural gas production. The combination of offshore, onshore, and shale oil and natural gas reserves combined with significant natural gas liquids resources makes the United States a promising producer of oil and natural gas in the future [3]. The United States is the world's largest producer of crude oil, natural gas, and petroleum products, and the world's largest producer of natural gas. The United States is the world's largest natural gas producer and the second-largest oil producer [4].

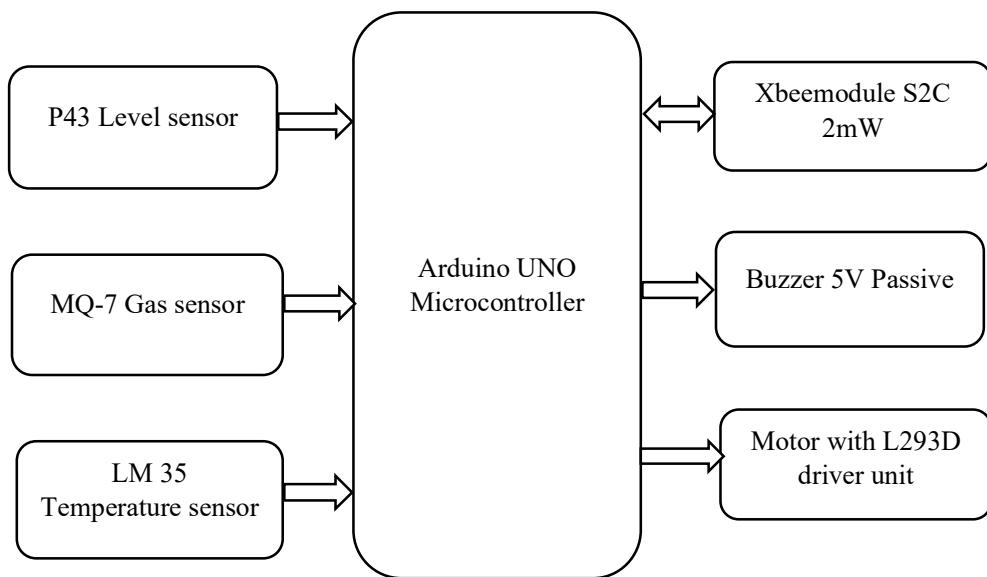
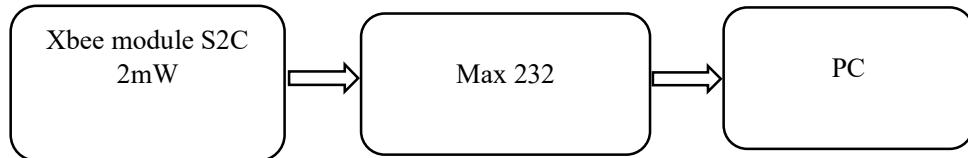
The oil and gas industry are one of the most exciting and rewarding sectors to work in. It offers a range of career opportunities for people with a variety of backgrounds and skill sets, and the chance to make a real difference in the world [5]. One of the most important roles in the industry is that of the oil and gas monitoring system operator. This job functions as the first line of defence against the unexpected, ensuring that any problems are identified and dealt with as quickly as possible [6]. The world is a much different place than it was even 20 years ago. The internet, smartphones, and other emerging technologies have revolutionized the way we live our lives [7]. The oil and gas industry has also undergone significant changes over the past couple of decades. New drilling techniques and advanced exploration methods have made it possible to access large amounts of previously inaccessible oil and gas reserves.

The internet of things (IoT) has the potential to change our lives in unimaginable ways. Devices such as smart speakers, smart appliances, and wearable devices are already a common sight in our lives. One of the most exciting applications of the IoT is in the oil and gas industry. Oil and gas wells are typically deep underground, where they are inaccessible and require expensive equipment to be operated.

Received: 23.05.2020 Revised: 19.06.2020 Accepted: 01.07.2020

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors

The research investigates the application of Wireless Sensor Networks (WSNs) in refineries, petrochemical plants, undersea development facilities, and oil and gas platforms. The study focuses on networks that monitor the manufacturing process to either avoid or identify health and safety hazards or to improve output. WSN applications provide excellent opportunity for production optimization when wired counterparts may be prohibitively expensive [8]. The goal of this study [9] is to monitor for liquid petroleum gas (LPG) leakage to minimise fire accidents and hazardous conditions while also offering a house safety feature in an age where security is a major concern. This system detects and monitors LPG leakage using a gas sensor and notifies users of the leakage through a buzzer and SMS. For household safety, an LPG leakage monitoring system is recommended [10].



Accidents caused by LPG explosions are becoming more common these days, posing a hazard to human life. In this method, the gas sensor detects LPG leaks and notifies the owner of the leak by SMS to his personal mobile phone, as well as activating the alarm [11]. They are attempting to investigate the issue of actual processing of combustion products and co₂ gas measurements using a DSP chip and then executing the suggested gas tracking system in this work [12]. Oil and gas companies use sensors to help them make better decisions. But this information is soloed within company databases and never reaches customers [13]. IoT can help change that by connecting sensors to the internet with the potential to improve service to customers while also generating revenue [14]. This article will go over some of the current uses of IoT in the oil and gas industry and discuss how an oil gas monitoring system could be implemented using existing technology [15].

PROPOSED METHODOLOGY

The Internet of Things (IoT) is a network of physical devices, vehicles, buildings, and other items, which are wirelessly connected to the internet. One of the most exciting applications of the IoT is the oil & gas industry. The IoT can be used to enhance oil & gas exploration and production, improve safety and efficiency, and reduce costs. However, to be successful in the oil & gas industry, the IoT needs to be implemented in an intelligent way. The existing system includes the OPU managers must routinely visit the field to monitor on the OPU's functioning and gather data on its health analysis. For the reason of the tough oilfield atmosphere, especially in winter when it becomes cold and freezing across the entire oilfield, physically managing and maintaining all OPU is rather challenging. During the oil-pumping operation, the OPU consumes a lot of power. Power wastage is especially severe in barren oil wells because each oil-pumping stroke also isn't filled under such conditions, resulting in a significant decline in oil output even though the OPU pump cycle stays high. An operator is responsible for several oil wells, and an OPU fault is difficult to find and fix in a timely manner, resulting in a decline in oil output. The Transmission Unit is shown in Figure 1.

A sensor network-based operating system for remotely oil field monitoring devices and autonomous gas control is suggested and implemented. Underground oil scarcity, gaseous impact [16], oil compressor on the touch, fuel pump beneath the contact, wax coating, pump rod broke off, lever jammed, major leakage from the oil pump, no problem. The Control unit is shown from Figure 2.

Zigbee is a wireless standard that operates in the same frequency range as Wi-Fi. It's used in home automation and IoT devices and can be used in place of Wi-Fi to extend your wireless network. Zigbee is also low power, which means it can be used to build wireless sensors that last for years on a single battery. Zigbee, or 802.15.4, is a wireless standard for short-range communication. It's often used for low-power, wireless sensors and devices. Zigbee operates in the 900MHz band, which means it can't interfere with other devices like Wi-Fi. It's also directionally transmitted and received, so it doesn't travel far and can't pass through walls.

Figure 1. Transmission Unit**Figure 2.** Control Unit

RESULTS AND DISCUSSIONS

Oil gas monitoring systems have traditionally relied on sensors placed along well paths to detect when things go wrong. But this method is slow and often misses small leaks and gas leaks that occur further down hole. Internet of Things (IoT) technologies has the potential to revolutionize the industry by allowing for real-time monitoring of well conditions. One such technology is an IoT oil gas monitoring system that uses sensors placed on the well to measure pressure, temperature, and other well conditions, and then transmits data to a central database. Oil and gas companies use sensors to help them make better decisions. But this information is soloed within company databases and never reaches customers. IoT can help change that by connecting sensors to the internet with the potential to improve service to customers while also generating revenue. This article will go over some of the current uses of IoT in the oil and gas industry and discuss how an oil gas monitoring system could be implemented using existing technology.

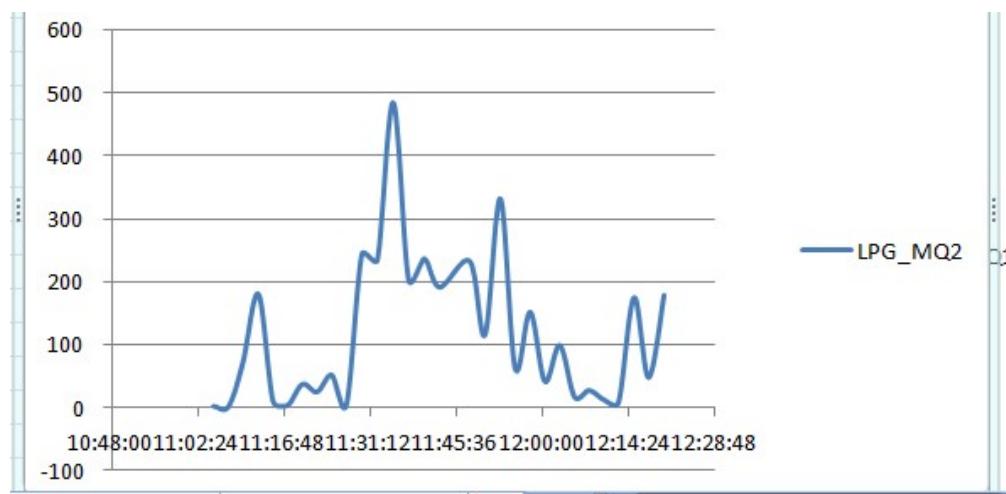


Figure 3. Gas Monitoring

From Figure 3 the Gas Monitoring has been shown. The most common use of sensors in the oil and gas industry is to help monitor gas levels in pipelines. This is done using gas sensors, which are tiny devices that detect certain gases in the air and measure the concentration. They are typically placed in pipelines to continuously monitor gas levels, and any changes in gas levels are reported back to a control center. This allows for preventive maintenance to be carried out when gas levels are likely to be lower than normal, which can save money in the long run.

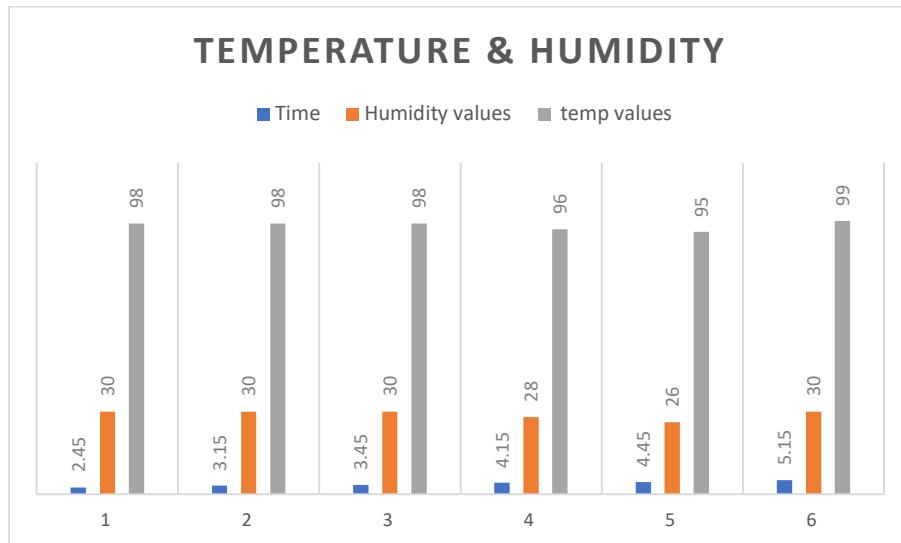


FIGURE 4. Temperature and Humidity

From Figure 4 the graphs show how the temperature and humidity levels of a home vary over the course of a day. The Y-axis shows the actual temperature and humidity in the home, while the X-axis shows the expected temperature and humidity based on the current temperature and humidity outside the home. The color coding shows the current temperature and humidity levels, with red being hotter and more humid than blue. The lines connect points with the same temperature and humidity. The Oil level monitoring is shown from Figure 5.

FIGURE 5. Oil level Monitoring

IoT can help change that by connecting sensors to the internet with the potential to improve service to customers while also generating revenue. This article will go over some of the current uses of IoT in the oil and gas industry and discuss how an oil gas monitoring system could be implemented using existing technology.

CONCLUSIONS

Natural gas has become a critical source of energy and a key contributor to our nation's economy. It provides an abundant, economical and cleaner alternative to coal, oil and other sources of energy. And with the recent shift towards cleaner burning natural gas in our homes and vehicles, it also reduces harmful emissions. But natural gas is much more than a fuel. The internet of things (IoT) has the potential to drastically alter our lives in unforeseeable ways. Smart speakers, smart appliances, and wearable gadgets are already commonplace in our lives. The oil and gas business are one of the most intriguing IoT applications. Oil and gas wells are often located deep below, where they are inaccessible and need the use of expensive equipment to operate. Our evolved application control facilities with an integrated dataset, i.e., the higher-level detector, are designed for thousands of oil wells information storage or managerial staff, information processing, failure sensing, misfire alert system or identification, stroke-adjustment function communication down to specific sensing devices for the energy economic system.

REFERENCES

- [1]. P. Junie, O. Dinu, C. Eremia, D. Stefanou, C. Petrescu and I. Savulescu, 2012, "A wsn based monitoring system for oil and gas transportation through pipelines," *IFAC Proc.* **45(6)**, pp.1796-801.
- [2]. S. N. Al-Humairi, D. R. Ravindran, M. I. Abdullah, B. Hamzah and M. H. Alkawaz, 2020, "Intelligent Monitoring System for Oil Well Efficiency," *In2020 16th IEEE Int. Colloquium on Signal Processing & Its Applications (CSPA)*, pp. 13-17.
- [3]. H. Yu and M. Guo, 2012, "An efficient oil and gas pipeline monitoring systems based on wireless sensor networks," *In2012 Int. Conf. on Information Security and Intelligent Control*, pp. 178-181.
- [4]. W. Z. Khan, M. Y. Aalsalem, M. K. Khan, M. S. Hossain and M. Atiquzzaman, 2017, "A reliable Internet of Things based architecture for oil and gas industry," *In2017 19th Int. conf. on advanced comm. Tech (ICACT)*, pp. 705-710.
- [5]. X. He, E. Robards, R. Gamble and M. Papa, 2019, "Anomaly detection sensors for a modbus-based oil and gas well-monitoring system," *In2019 2nd Int. Conf. on Data Intelligence and Security (ICDIS)*, pp. 1-8.

- [6]. Y. Zhang, S. Chen, J. Li and S. Jin, 2014, "Leak detection monitoring system of long-distance oil pipeline based on dynamic pressure transmitter," *Measurement*, **49**, pp. 382-389.
- [7]. M. Y. Aalsalem, W. Z. Khan, W. Gharibi, M. K. Khan and Q. Arshad, 2018, "Wireless Sensor Networks in oil and gas industry: Recent advances, taxonomy, requirements, and open challenges," *J. of network and computer applications*, **113**, pp. 87-97.
- [8]. M. reza Akhondi, A. Talevski, S. Carlsen and S. Petersen, 2010, "Applications of wireless sensor networks in the oil, gas and resources industries," *In2010 24th IEEE Int. Conf. on Advanced Information Networking and Applications*, pp. 941-948.
- [9]. H. Navale and B. V. Pawar, 2014, "Arm based gas monitoring system," *Int. J. of sci. & tech. res.*, **3(6)**, pp.43-45.
- [10]. A. Raj, A. Viswanathan and T. Athul, 2015, "LPG gas monitoring system," *IJITR*, **3(2)**, pp.1957-1960.
- [11]. A. Macker, A. K. Shukla, S. Dey and J. Agarwal, 2018, "ARDUINO based LPG gas monitoring... automatic cylinder booking with alert system," *2nd Int. Conf. on Trends in Electronics and Informatics (ICOEI)*, pp. 1209-1212.
- [12]. A. Kumar, I. P. Singh and S. K. Sud, 2009, "Indoor environment gas monitoring system based on the digital signal processor," *In2009 Int. Multimedia, Signal Processing and Comm. Technologies*, pp. 245-249.
- [13]. B. D. Jolhe, P. A. Potdukhe and N. S. Gawai, 2013, "Automatic lpg booking, leakage detection and real time gas measurement monitoring system," *Int. J. of Eng. Res. & Tech. (IJERT)*, **2(4)**, pp. 1192-1195.
- [14]. Y. Fan, X. Zhu, H. Sui, H. Sun and Z. Wang, 2019, "Design and application of toxic and harmful gas monitoring system in firefighting," *Sensors*, **19(2)**, pp. 1-14.
- [15]. M. Rossi and D. Brunelli, 2014, "Ultra-low power MOX sensor reading for natural gas wireless monitoring," *IEEE Sensors J.l*, **14(10)**, pp.3433-3441.
- [16]. S Murugan, A. Bhardwaj, and T. R. Ganeshbabu, 2015, "Object recognition based on empirical wavelet transform," *Int. J. of MC Square Sci. Res.* **7(1)**, pp. 74-80.