
International Journal of Industrial Engineering
 2020;4(1):1-5.

ISSN: 2456-8449

Received: 08.01.2020 Revised: 02.02.2020 Accepted: 13.02.2020
Licensed under a CC-BY 4.0 license | Copyright (c) by the authors

1

Design and Implementation of a Resource-Efficient
Lossless Data Compressor on Xilinx FPGAs

Kamalakannan Machap1*, A. Rajalingam2

1School of Technology, Asia Pacific University of Technology and Innovation Kuala Lumpur,

Malaysia.
2Department of Electronics and Communication Engineering, University of Technology and Applied

Sciences Shinas, Sultanate of Oman.

*Corresponding author: dr.kamalakannan@staffemail.apu.edu.my

Abstract. The Deflate encryption algorithm is one of the most frequently used lossless compression techniques,
serving as the foundation for the.zip file formats, as well as the Hypertext Transfer Protocol. Field-Programmable
Gate Arrays are increasingly being used to create hardware accelerator combinations with traditional Central
Processing Unit (CPU) servers inside the Cloud server. FPGAs' capacity to be swiftly reprogrammed, as well as the
intrinsically simultaneous capabilities that they provide, make them particularly well suited for some internet
workloads, such as data compression and expansion. Good compression bandwidth utilization usually needs
sacrificing some high compression. The fundamentally serial character of the secured manner allows concurrent
mission execution in Deflate decompresses without changing the standardized format.Lossless compression is used
to minimize data storage and to make better use of limited transmission capacity. The volume of information
gathered, analyzed, and communicated through the Internet continues to grow in today's technology age. As a result,
efficient data compressing and extraction method hardware and software implementations are now becoming
increasingly useful.

Keywords:Optimization, Algorithm, Lossless, Lossy, FPGA, compression.

INTRODUCTION

There are two forms of data compaction: lossy or lossless. Following decompress, data from an encrypted
format must be totally restored to its original content in compression. Data compression, on the other hand, is
used on data when information loss may be accepted, and the compression process can be sped up by removing
some potentially less significant information about the data [1]. For particular, lossy encryption methods can
lower the quality of audio and visual data to an acceptable level in order to minimize data bandwidth for
multimedia streaming whenever necessary. However, many different sorts of data exist, including financial data,
literature, textual documents, computer programs, and so on. The decompression ratio is the ratio of the
uncompressed data size to the condensed data size. In general, a larger combustion engine is desired. A
compression ratio of 2.00 indicates that a compacted item is half the size of its inflated counterpart. They cannot
accept any loss of fidelity. Hence they must be lossless compacted. Lossy compression cannot be compressed as
forcefully as lossy compression since no random error can be tolerated.

Deflate [2] is one of the most extensively used quantization techniques today, serving as the foundation
again for commonly used uncompressed le formats.zip,.gz, and.png [3]. The compression time and depth of cut
have a negative correlation in Deflate contraction. More time may often be spent reducing data in order to get a
higher high compression. In contrast, the work to make sure can be sped up by using less assertive compaction,
which is more likely to result in a lower higher compression[4]. When deciding however much opportunity to
spend on compressing, a balance must be established between making the process beneficial by optimizing the
high compression and remaining cost-competitive. They cannot accept any loss of fidelity. Hence they must be
lossless compacted. Lossy compression cannot be compressed as forcefully as lossy compression since no
random error can be tolerated.

Deflate [5] is serving as the foundation again for commonly used uncompressed le formats.zip,.gz, and.png
[6]. The compression time and depth of cut have a negative correlation in Deflate contraction. More time may
often be spent reducing data in order to get a higher high compression[7]. In contrast, the work to make sure can

International Journal of Industrial Engineering
 2020;4(1):1-5.

ISSN: 2456-8449

2

be sped up by using less assertive compaction, which is more likely to result in a lower higher compression.
When deciding however much opportunity to spend on compressing, a balance must be established between
making the process beneficial by optimizing the high compression and remaining cost competitive[8].
Customarily, equipment incubators were also incorporated using modestly concurrent multi-core CPUs and
parallel processing Graphics Cards.

PROPOSED METHOD

They can be fast reconfigured, allowing accelerator models to be influenced by other factors or happen to
change as needed. An FPGA's computer-controlled fabric of underlying hardware enables various low-level
optimization techniques to designs, such as using minimized precision tad over the top. Due to the failure of
Glennon scaling [9], clock speeds can no longer be significantly increased without surpassing realistic resource
or temperature limits, abandoning parallel processing as the primary approach for speeding calculations [10].
FPGAs and GPUs have parallel processing configurations that allow them to utilize concurrency more
efficiently and directly than CPUs[11]. ASIC design can be extensively tailored to provide the best possible
performance for a specific algorithm, but at the expense of a longer design stage, more design risk, high
masking cost, and so, therefore, higher operational cost. FPGAs have numerous advantages[12]. They can be
rapidly programmed, allowing throttle designs to be influenced by other factors or transformed as needed[13].
An FPGA's extensible computer-controlled fabric of physical servers enables various low-level optimizing
compilers to designs, such as using minimized precision tad over the top for computing and storage to save time,
area, and power[14]. Device designs may be generated, validated, and packaged as Design And patent blocks
that can subsequently be reproduced and readily interfaced together, allowing for the creation of modular
parallelizing systems that can be optimized for optimal throughput[15].

FIGURE 1: Block Diagram of the Proposed Algorithm

These possible matches are then added to the actual input signal, which is shown in Figure 1, with the

greatest comeback replacing the input bytes with a lengthy-distance pair. More time will be spent looking for
such longest feasible match in order to obtain more reduction. Limiting the scan for matching it'll save time, but
this may reduce the high compression attained. A compression whose primary goal is to maximize compression
ratio will, in speaking, need to spend longer executing the matching phase[16].

Input Object (Image)

Pre processing Image Transformations

Lossless Compression

Lossy Compression

Stage 2

Compression data

International Journal of Industrial Engineering
 2020;4(1):1-5.

ISSN: 2456-8449

3

Each constantly coded block would have its own set of dynamically coding that is optimized for the symbols
contained inside that block. The dynamic code databases with each dynamic block are stored with the
compressed data and utilized to decipher the data during extraction by the complete coverage. Though
significantly more difficult, encoding Date blocks with Human variable codes rather than static codes allow for
increased compression algorithms. Until the Uploaded code is obtained and decoded, the length of a Deflate
block is undetermined. The following block starts shortly after the EOB code. Aside from stationary and non -
stationary blocks, there is a third form of block known as a stored block, which holds unprocessed data. Stored
chunks are commonly utilized to avoid compressing data that cannot be meaningfully compacted. Different
VLSI architectures are discussed in [17-18].

A parallelizing MQ coder with three stages is suggested. It conducts all mathematical operations in the first
stage, A and C registration shifts inside the second phase, and bytes are output in the third stage. The authors'
solution had a disadvantage seeing as how stage two may stop the first if the amount of shifts has been more
than one because the researchers did not employ barrel shifters. Finally, they worked past this issue by creating
two clock domains to speed up the process of the shifting step, ensuring stalling. A new cascaded technique is
given. A register updating, C register keep updating, and bytes out methods are maintained separate, and two
more are introduced at the start by employing two memory cards. The first hold contextual information, such as
the state and expected symbol, while the second is a ROM that outputs state methodology based. If the states of
two successive contexts are the same, the next context will be retrieved with both the moving direction that was
supplied to the first. This divides reading into two steps, which speeds up the system. Another important
strategy is that shifting is confined to just 7 bits per cycle, which reduces the critical activities at the cost with
one loop stall in the improbable chance that the shift quantity exceeds eight.

The remaining modules are basic, with context synthesis consisting of a ROM that produces the contexts
connected with the neighborhood via a simple search. The cleaning predictor works similarly to the significant
forecast by looking at the first nonzero bit and marking it and the succeeding ones as significant if necessary.
The potential throughput of most systems varies due to the data getting compressed. The purpose of this study
was to provide an architecture that can process pairs at a constant rate. Because the architecture is pipelined and
delays are inserted across phases, any possible stall in one step is swallowed by the delays and has no effect on
another.

RESULTS & DISCUSSIONS

The dependability of all timed mechanisms associated with it The sophisticated method necessitates high-
performance equipment for effective implementation. The most expensive component of the Jpeg image seems
to be the top global coder because code with irregular branching is difficult to optimize for conventional
machines.

TABLE 1: Comparison with Existing Method

Parameter Existing method Proposed method

LUTs 10.29% 8.31%
Power consumption(mW) 290mW 281mw

A method's straightforward arithmetic and logic operations, this component of the algorithm,are appropriate

for implementation on an FPGA shown in Table 1. Based on two key principles, a highly fast structure for the
whole tier 1 coder inside Image compression has been established. First, its bit plane coder handles bits in
groups of 4 at the same time, considerably speeding processing. A FIFO and buffered mechanism ensure that
somehow a constant supply of CxD pairs reaches the Parameter. Second, in a cascaded approach, the coder is
super fast. Stalling of the pipeline, which was a concern in prior designs, is eliminated by merging to produce a
greater widely present practical. It introduces a complicated compression algorithm to genuine inside the context
of hyperspectral. Under the Satellite image sensing threshold, effectiveness. This enables very high bandwidth
rates to be decreased for extended storage while maintaining good quality for subsequent analysis.

International Journal of Industrial Engineering
 2020;4(1):1-5.

ISSN: 2456-8449

4

CONCLUSIONS

Inside the Cloud server, Field-Programmable Gate Arrays (FPGAs) are increasingly being employed to
develop hardware accelerators in conjunction with regular Central Processing Unit (CPU) servers. FPGAs are
particularly well suited for specific internet applications, such as data compression and expansion, because of
their ability to be quickly reprogrammed and the intrinsically simultaneous capabilities they give.The wavelet
transform system that relies on stationary wavelet has been shown to be more efficient than the wavelet
transform system based on wavelet transformation in terms of compressing and slowing down an image. To gain
greater performance at low bit rates, the decompression system was tested utilizing configurable field-
programmable gate arrays. The power usage was found to be lower than that of previous approaches employing
the wavelet transform. The technology compress and defragments images more quickly and with reduced
critical path latency. The suggested picture clustering algorithm is more accurate. The rebuilt picture looks to be
the same as the input image after removing a few superfluous data points. When this approach is implemented to
the static harmonic transform, it produces some intriguing outcomes in image compressing systems.

REFERENCES

[1]. O. Mulani, and P. Mane, 2018, “Secure and area efficient implementation of digital image
watermarking on reconfigurable platform,” Int. J. Innov. Technol. Explor. Eng.(IJITEE), 8(2), p.56-61.

[2]. Rodriguez, L. Santos, R. Sarmiento, and E. De La Torre, 2019, “Scalable hardware-based on-board
processing for run-time adaptive lossless hyperspectral compression,” IEEE Access, 7, pp.10644-
10652.

[3]. M. Ledwon, 2019, Design of FPGA-based accelerators for Deflate compression and decompression
using high-level synthesis.

[4]. M. Bartík, T. Beneš, and P. Kubalík, 2019, “Design of a high-throughput match search unit for lossless
compression algorithms,” In 2019 IEEE 9th Annual Computing and Comm. Workshop and Conf.
(CCWC), pp. 0732-0738.

[5]. N. Kapre, and J. Gray, 2017, “Hoplite: A deflection-routed directional torus noc for FPGAs,” ACM
Trans. on Reconfigurable Tech. and Systems (TRETS), 10(2), pp.1-24.

[6]. S. Padmavati, and V. Meshram, 2019, “A Hardware Implementation of Fractal Quadtree Compression
for Medical Images,” In Integrated Intelligent Computing, Comm. and Security, Springer, Singapore,
 pp. 547-555.

[7]. M. Bartík, T. Beneš, and P. Kubalík, 2020, “An In-Sight Into How Compression Dictionary
Architecture Can Affect the Overall Performance in FPGAs,” IEEE Access, 8, pp.183101-183116.

[8]. R. Poovendran, and S. Sumathi, 2018, “An Area-Efficient FPGA Implementation of Network-on-Chip
(NoC) Router Architecture for Optimized Multicore-SoC Communication,” Sensor Letters, 16(7),
pp.552-560.

[9]. S. T.Mrudula, K. S. Murthy, and M. G. Prasad, 2019, “M-ABRC (Adaptive Binary Range Coder) using
Virtual Sliding Window technique and its VLSI implementation,” Microprocessors and
Microsystems, 71, pp.1-9.

[10]. Y. Chen, S. T. Gurumani, Y. Liang, G. Li, D. Guo, K. Rupnow, and D. Chen, 2015, “FCUDA-NoC: A
scalable and efficient network-on-chip implementation for the CUDA-to-FPGA flow,” IEEE Trans. on
Very Large Scale Integration (VLSI) Systems, 24(6), pp.2220-2233.

[11]. M. Orlandić, J. Fjeldtvedt, and T. A. Johansen, 2019, “A parallel FPGA implementation of the
CCSDS-123 compression algorithm,” Remote Sensing, 11(6), p.673-692

[12]. M. Ali, P. A. Rad, and D. Göhringer, 2020, “RISC-V based MPSoC design exploration for FPGAs:
area, power and performance,” Int. Symposium on Applied Reconfigurable Computing pp. 193-207.
Springer, Cham.

[13]. M. A. Manivasagam, 2017, “An Efficient Self-Reconfiguration and Route Selection for Wireless
Sensor Networks,” Int. J. of MC Square Sci. Res. 9(2).

[14]. N. Jeebaratnam, S. S. Nayak, and N. Patra, 2020, FPGA Design for Implementation of the 2 D Discrete
Cosine Transformation for Image Processing, The Mattingley Publishing Co., Inc., pp.17220-17227.

[15]. M. Ali, P. A. Rad, and D. Göhringer, 2020, “RISC-V based MPSoC design exploration for FPGAs:
area, power and performance,” In Int. Symposium on Applied Reconfigurable Computing, pp. 193-207.
Springer, Cham,.

[16]. B Pattanaik, and S. Murugan, 2017, “Cascaded H-Bridge Seven Level Inverter using Carrier Phase
Shifted PWM with Reduced DC sources." Int. J. of MC Square Scientific Res. 9(3), pp. 30-39.

International Journal of Industrial Engineering
 2020;4(1):1-5.

ISSN: 2456-8449

5

[17]. J. S. T. Thilagam, 2017, “RSA Encryption Using VLSI Architecture for High Speed Applications,” Int.
J. Adv. Sig. Img. Sci, 3(2), pp. 21–26.

[18]. D. S. Lenin, and H. Shekar, 2016, “Design of Low Power Novel Gate,” Int. J. Adv. Sig. Img. Sci, 2(1),
pp. 19–23.

