

Review Article

Software Tools for Analyzing the Integration of Various Renewable Energy Systems

M. Suresh*, R. Meenakumari

Department of Electrical and Electronics Engineering, Kongu Engineering College, Perundurai - 638 060. Tamil Nadu, India.

*Corresponding author's e-mail: <u>infostosuresh@gmail.com</u>

Abstract

Renewable energy sources are being utilized for supplying the electrical energy in remote rural areas, where grid extension is difficult. It also offers certain advantages like clean and green energy, pollution free environment, no greenhouse gas emissions, etc. Due to the intermittent nature of renewable energy sources, the integration of various energy sources may serves as an alternative for meeting the energy demand. A hybrid energy system is one which utilizes more than one energy sources in combination. While integrating the various energy sources, it is quite difficult to integrate them; hence a proper design is required to analyze the techno-economical aspects of integrated renewable energy systems. A number of software tools were available for analyzing the integration of renewable energy systems to design, evaluating their performance, determining the optimal design, economic viability of the various energy sources about the various software tools available for analyzing the integration of various renewable energy sources with the grid. The main objective of this paper is to provide the information/insight to a researcher as well as for energy planners regarding the selection of energy sources for the development of integrated renewable energy systems.

Keywords: Hybrid energy systems; Rural electrification; Sizing optimization; Optimal planning.

Introduction

In developing countries like India, most of the rural areas have no access to electricity due to the uneconomical grid extension and nonavailability of energy sources. Energy demand is increasing day by day due to the increase in population, decreased energy production due to the increase in fuel cost, etc. In earlier 1970s, due to the oil crisis, a tremendous interest have showed towards the utilization of been renewable energy sources for supplying the energy to the remote areas and also to the places where there is an abundant of energy sources. Among the various energy sources, solar and wind energies are most widely used and predominant in nature. The main disadvantages of these two resources are intermittent nature, site specific, seasonally dependent, etc. Some of the other energy sources used for electricity production biomass. are water. biogas, geothermal heat, etc. Usually, renewable energy systems are based on single energy sources or multiple energy sources. Single energy source

based systems utilizes one sources based on solar/ wind/ biomass/ biogas based on their availability, whereas multiple energy source based systems incorporates more than one energy sources along with the battery and a suitable power electronic systems for the power conversion. Several hybrid energy systems are reviewed in literature such as solar-wind, solarwind-battery, solar-wind-biomass-battery, solarwind-biogas-battery, etc [1]. While designing/ integrating the various renewable energy systems, a proper design is required with the utmost care. Because of the integration of multiple energy sources, it is quite complex to match the sources with one another. Hence, optimal planning of integration of energy sources is essential to reduce the installation cost. This requirement can be met out by using the various software tools for analyzing the integration of energy sources. A number of software tools were available to evaluate their designs, analyze their performance to find the optimal solution. There were about more than 68 tools available for analyzing the performance of integrated renewable energy systems, out of which 37 tools are most widely used. Some of them are Aeolius, EMPS, Energy Plan, HOMER, Hysim, Hybrid 2, iHOGA, INSEL, RET Screen, SOLSIM, TRNSYS 1.6, etc. The present review will help the researchers and energy planners for the selection of suitable energy tool for analyzing the techno-economic feasibility of integrated renewable energy systems. An up-todate review of software tools available for renewable energy systems is essential for the optimal planning of IRES. In the early 1900's, many researchers discussed about the design scenarios and design formulation of integrated renewable energy systems using the knowledge based design tool IRES-KB with the aid of KAPPA-PC development tool [2]. A remote village with no access to electricity is chosen for the study and pointed out the impact of IRES for electrifying the selected remote area. Also, the versatility of IRES-KB is brought out in the discussion results [3]. Several approaches have been reported in the literature including linear programming, goal programming, probabilistic approach involving Loss of Power Supply Probability, trade off methods, knowledge based approach, etc. Most of the researchers and energy planners discussed about the various software tools available for the hybrid energy systems to help the researchers to choose a proper tool for the development and analysis of integrated renewable energy systems [4]. Only 19 software tools were reviewed, but failed to discuss about the several tools for optimal planning of HES. In this paper, a comparative study is being carried out to analyze and evaluate the performance of HOMER and RET Screen for the selected area and also highlighted the importance of energy planning tools for the development of HES.

Renewable energy based strategies for off grid and on grid based rural electrification for the state of Uttarakhand [5]. This paper also addresses the availability of energy resources, technology options and discusses the barriers and issues in integrating them. Several papers have been reported in literature, focusing on one or two software tools for analyzing IRES, but of them failed to explain most the comprehensive review of the tools available for renewable energy systems [6]. On taking into account, this paper mainly focuses on the review

of various software tools for analyzing the integration of renewable energy sources.

An integrated renewable energy system model for a remote area and insisted the importance of IRES for cost effective power generation and the development of a nation [7]. In this paper, the main objective function is to minimize the cost of energy by utilizing the available energy resources effectively. Many researchers highlighted the importance of various methodologies, unit sizing, optimization, energy storage systems and energy management of IRES along with the energy sustainability [8]. An IREOM model for unit sizing and optimization of renewable energy systems based on the seasonal variation in the load profiles of the study area [9-10]. The present review attempts understand the development on correlation between renewable energy system sizes and their capital cost for the user specified system sizes.

Software tools for IRES

RET Screen

RET Screen is an Excel based clean energy management software tool that helps the energy planners and decision makers to determine the technical and economic viability of renewable energy potential, energy efficiency and cogeneration projects. It is a most widely used tool for performing the feasibility studies in IRES and is freely downloadable software developed by Ministry of Natural Resources, Canada.

It uses visual basic and C language as platform and was released in the year 1988. This software can be accessible in more than 30 languages and has two separate versions RET Screen 4 and RET Screen plus. In this software, there are a number of worksheets available for performing project analysis including modeling, analysis, optimization, etc. RET Screen has certain limitations which includes data sharing problems, limited options for search and retrieval features, etc.

HOMER

Hybrid Optimization Model for Electric Renewables (HOMER) is user friendly, freely available and most widely used software, which was developed by National Renewable Energy Laboratory (NREL), USA in the year 1993. Is uses visual C++ as a programming language.

HOMER uses the inputs like resource availability, manufacturer's data, component costs, etc and generates the list of feasible configurations based on the Net Present Cost (NPC). It also displays a variety of tables and charts along with graphs which helps the user to compare the various configurations and analyze them based on their economic merits. HOMER fewer disadvantages which has includes. objective allowing single function for minimizing NPC, does not considering depth of discharge (DOD) of battery, etc [11].

HYBRID 2

HYBRID 2 was developed by Renewable Laboratory (RERL) in Energy Research University of Massachusetts, USA along with National Renewable Energy Laboratory, USA in the year 1996, whereas HYBRID 1 was developed in the year 1994. It uses Microsoft Visual basic as a programming language and uses a Microsoft Access database. HYBRID 2 is a probabilistic/time series based computer model which uses statistical model to analyze the performance of IRES. HYBRID 2 consists of four parts namely Graphical User Interface, Simulation Module, Economics Module and Graphical results Interface.

iHOGA

Improved Hybrid Optimization by Genetic Algorithm is a C++ based hybrid system optimization tool developed by University of Zaragoza, Spain. This software uses solar PVs, WTGs, MHPs, fossil fuels, etc for modeling the IRES with either single or multiobjective function for optimization. It has two versions namely PRO+ and EDU. Some of the limitations of iHOGA includes, it can simulate within a total average daily load of 10kWh [12].

INSEL

Integrated Simulation Environment Language was developed by University of Oldenburg, Germany which allows the users to make a structure with the help of its library with a specified execution time. INSEL is a modular simulation environment which offers more than conventional simulation program. This а software can be used to understand, plan, monitor and visualize the energy systems. It supports the users with datasets for PV modules, thermal collectors and meteorological parameters, which is fully compatible with

MATLAB and Simulink. This software is not most widely used, which is under continuous improvement during the last 2 decades.

TRNSYS

Transient Energy System Simulation Program was jointly developed by University of Wisconsin and University of Colorado in the year 1975. Initially, this software was developed for thermal systems simulations and later it has been promoted to include solar PV systems and some other energy systems along with thermal systems.

It allows the user to program in FORTRAN code, which does not provides optimization of energy sources, but it can be used for carrying out the simulation part in designing the renewable energy systems. TRNSYS 17.0 was released during the year 2010 and TRNSYS 17.1 was released during the year 2012.

EMPS

EMPS is (EFI's Multiarea Power market Simulator) is a computer tool developed for forecasting and energy planning in electricity markets. It has been actually developed for simulating and optimizing the hydrothermal energies with hydro power. It also considers the transmission constraints and hydrological differences between two areas. Its main objective is to minimize the total expected cost of the whole systems considering all the constraints like fuel cost, cost of energy, emissions, etc. EMPS software can also be used for analyzing the overflow losses, calculating energy balances, forecasting electricity prices, scheduling of power, etc.

EnergyPLAN

EnergyPLAN is a computer model designed for performing energy system analysis. It is a deterministic model which can optimize the operation of a given energy system based on the inputs and outputs defined by the users. It was developed and maintained by Sustainable Energy Planning Research Group at Alaborg University, Denmark in the year 2000. It simulates the operation of national energy systems on hourly basis including all the energy sectors. The main advantage of EnergyPLAN tool is that it aids to design and develop the 100% renewable energy systems.

HySim

HySim is a hydrological simulation model which can uses rainfall and potential evaporation datas to simulate and execute the hydrological cycle on a continuous basis. It can use data on rainfall, potential evaporation, snow melt and abstractions from discharges, etc. It is also flexible in terms of sub catchments and the reaches for outflow routing can be either channels or reservoirs. The main advantages of HySim are: useful for predicting long term rainfall and data, flow naturalization, flood studies, etc.

SolSim

SolSim was initially introduced in Germany by Fachhochschule Konstanz for integrating the renewables like solar PV, wind turbines, DG sets, biogas and biomass energy systems. It performs economic analysis with limited control options and uses large amount of data to perform the simulation of IRES. Nowadays, SolSim is not widely used to perform the energy generating options.

Hybrid Designer

Hybrid Designer was developed and initially used by the Energy and Development Research Centre of University of Cape Town in South Africa for simulating the renewable energy models in off grid mode employing genetic algorithm concepts for minimizing the net present cost of a system.

SOMES

Simulation and Optimization Model for Renewable Energy Systems (SOMES) was developed in the year 1987 at Utrecht University, Netherlands. It can simulate hourly basis energy generating options with an average electricity production from renewable energy sources. Also, it can perform optimization of leveled cost of energy from the combination of various energy sources [13].

SOLSTOR

SOLSTOR was introduced by Sandia National Laboratory in the year 1980s to perform the simulation, optimization and economic analysis of integrated renewable energy systems. It can minimize the life cycle cost of energy by choosing optimum number of solar panels, optimum tilt angles, and optimal wind energy system components. It can be suited for both on grid and off grid applications, but it is not widely used by the researchers for simulating the energy systems.

iGRHYSO

iGRHYSO (improved Grid Connected Renewable Hybrid System Optimization) is an improved version of GRHYSO, uses C++ as the platform for optimizing the energy systems. It can simulate and perform the analysis to find the net present cost at low value. It has an advantage over other simulation softwares that the effect of temperature on solar photovoltaics, effect of wind velocity in wind power generation can be taken into account .

HybSim

HybSim was developed by Sandia National Laboratory for performing the economic analysis of a remotely located area, wherein the energy demands were met out by the renewable energy sources along with the conventional fossil fuel generators. It requires detailed load demand profile along with weather characteristics, solar radiation, wind velocities, etc.

IPSYS

Integrated Power System tool, sometimes called as IPSYS uses C++ language as the platform for simulating the various energy sources for a remote located area. It is possible to simulate the various energy sources like solar PV, wind energy generators, micro hydropower plants, biogas reservoirs, biomass plants, etc.

ARES

Autonomous Renewable Energy Systems (ARES) is a program developed by Cardiff School of Engineering, University of Wales, UK for performing the simulation and analysis of solar-wind-battery based energy systems. It can calculate the LPSP (loss of power supply probability) based on the input datas provided by the user. It employs a separate subroutine program for each of the sources considered. It is not widely used.

Other software based studies for IRES

Among the various simulation software discussed above, many of the researchers were using HOMER for simulating the integrated renewable energy systems with various parameters and constraints. In the field of IRES, apart from computer based simulation software like HOMER, RET Screen, etc for integrating the renewables, some of the conventional methodologies like artificial intelligence, multiobjective design, analytical approach, iterative technique, probabilistic approach, graphical construction method, etc were used.

Artificial Intelligence Approach

Artificial Intelligence approaches includes artificial neural networks, genetic algorithms, particle swarm optimization, biogeography based optimization, ant colony optimization, fuzzy logic control were mostly used by the researchers and energy planners to simulate and analyze the various renewable energy systems.

Multi Objective deign

In multi-objective design approach, there are two common approaches used, ie. One approach is to merge all the individual objective functions into a single composite and the second one is an entire Pareto optimal solution set is to be determined. A solution is said to be pareto, if the obtained solution is dominant over the other solutions obtained. A pareto optimal solution cannot be improved with regards to any objective without deteriorating at least one objective.

Iterative approach

An iterative approach uses a recursive program which ends when the optimum system design is obtained while evaluating the performance of integrated renewable energy systems. In this methods, the system cost is minimized either by linearly changing the values of parameters or by linear programming techniques.

Analytical Method

In analytical method, Computational models are being used for characterizing each of the components of integrated renewable energy systems to find the feasibility of the system. Hence, the effect of feasibility can be improved by changing the blocks inside the computational models in each of the considered components. Also, the best configuration of integrated renewable energy system is evaluated by comparing single or a multiple performance index of the different configurations.

Probabilistic approach

While modeling the integrated renewable energy systems, the effect of insolation, change in temperature, changes in wind speeds were taken into account by using the probabilistic based approaches. But, this optimization technique cannot characterize the dynamic changing performance of the system considered.

Graphical Construction method

In graphical construction method, only two decision variables were considered for optimization i.e, either solar and battery or SPV and wind turbine. But it does not considers the parameters like the number of SPV modules, tilt angle, wind velocity, wind turbine installation height, etc [14].

Conclusions

In the present paper, a complete review of the various software tools used for sizing of integrated renewable energy systems were presented. Also, apart from the computer based simulation software tools, conventional methods were also presented. It is found that among the various software tools, HOMER is found to be the most widely used tool as it has the maximum number of combination of renewable energy performs optimization systems and and sensitivity analysis which makes it easier and faster to evaluate and analyze as many possible system configurations. Also, the performance of software tools for IRES can be improved through various control strategies like load demand management, economic planning, inclusion of non-renewable and renewable with various energy storage systems in order to reduce the total cost of the system with optimum components.

Conflicts of interest

Authors declare no conflict of interest.

References

- [1] Swati N, Lini M. Hybrid Renewable Energy System: A Review. International Journal of Electronic and Electrical Engineering. 2014;5:535-42.
- [2] Kanase-Patil AB, Saini RP, Sharma MP. Development of IREOM model based on seasonally varying load profile for hilly remote areas of Uttarakhand state in India. Energy. 2011;36:5690-702.
- [3] Gupta A, Saini RP, Sharma MP. Steadystate modeling of hybrid energy System for

off grid electrification of cluster of villages. Renewable Energy. 2010;35:520-35.

- Chauhan A, Saini RP. A review on [4] integrated renewable energy system based generation power for standalone applications: Configurations, storage options, sizing methodologies and control. Renewable Sustainable and Energy Reviews. 2014;38:99-120.
- [5] Chauhan A, Saini RP. Renewable energy based power generation for Standalone applications: Review. International Conference on Energy Efficient Technologies for Sustainability, Nagercoil, India: 2013.
- [6] Gavanidou ES, Bakirtzis AG. Design of a standalone system with renewable Energy sources using trade off methods. IEEE Transactions on Energy Conversion. 1992;7:42-48.
- [7] Lambert T, Gilman P, Lilienthal P. Micro power system modeling with HOMER in Integration of Alternative Sources of Energy. New Jersey: John Wiley & Sons Inc.: 2006.
- [8] Adaramola MS, Agelin-Chaab M, Paul MS. Analysis of hybrid energy systems for application in southern Ghana. Energy Conversion and Management. 2014;88:284-95.

- [9] Ramakumar R, Abouzahr I, Krishnan K, Ashenayi K. Design scenarios for integrated renewable energy systems. IEEE Transactions on Energy Conversion. 1995;10:736-46.
- [10] Sinha S, Chandel SS. Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews. 2014;32:192-205.
- [11] Sureshkumar U, Manoharan PS, Ramalakshmi APS. Economic cost analysis of hybrid renewable energy system using HOMER. Proceedings of the IEEE–International Conference on Advances in Engineering Science and Management. 2012;94-99.
- [12] Swati N, Lini M. Optimization and Comparative analysis of Non Renewable and Renewable System. International Journal of Advances in Engineering and Technology. 2014;3:930-37.
- [13] Maheshwari Z. An approach to modeling and optimization of Integrated Renewable Energy Systems. M.S. Thesis. Oklahoma State University. USA. 2013.
- [14] Zhou W, Lou C, Li Z, Lu L, Yan H. Current status of research on optimum Sizing of stand-alone hybrid solar-wind power generation systems. Applied Energy. 2010;87:380-89.
